This commit is contained in:
josc146
2024-05-28 22:35:47 +08:00
parent 3488d22d22
commit f05a4acb04
138 changed files with 29047 additions and 334 deletions

View File

@@ -270,8 +270,10 @@ class MMapIndexedDataset(torch.utils.data.Dataset):
np_array = np.append(np_array, np_array0)
return np_array
def only(self, idx):
def only(self, idx, length=None):
ptr, size = self._index[idx]
if length < size:
size = length
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)

View File

@@ -179,8 +179,12 @@ class MyDataset(Dataset):
if args.data_type == "binidx":
if args.my_pile_version == 1:
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
# dix = data.pad(idx=idx, length=req_len).astype(int)
if args.dataload == "pad":
dix = data.pad(idx=idx, length=req_len).astype(int)
elif args.dataload == "only":
dix = data.only(idx=idx, length=req_len).astype(int)
else:
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
else:
# self.data : cutoff, chunk_count, data
for j in range(len(data)):

52
finetune/lora/v6/src/infctx_module.py vendored Normal file
View File

@@ -0,0 +1,52 @@
import torch
######state
class TimeMixState:
def __init__(self, shift_state: torch.Tensor, wkv_state: torch.Tensor):
self.shift_state = shift_state
self.wkv_state = wkv_state
class ChannelMixState:
def __init__(self, shift_state: torch.Tensor):
self.shift_state = shift_state
class BlockState:
def __init__(self, time_mix_state: TimeMixState,
channel_mix_state: ChannelMixState):
self.time_mix_state = time_mix_state
self.channel_mix_state = channel_mix_state
class BlockStateList:
def __init__(self, shift_states, wkv_states):
self.wkv_states = wkv_states
self.shift_states = shift_states
@staticmethod
def create(N, B, C, H, device, dtype):
result = BlockStateList.empty(N, B, C, H, device, dtype)
result.wkv_states[:] = 0
result.wkv_states[:] = 0
result.shift_states[:] = 0
return result
@staticmethod
def empty(N, B, C, H, device, dtype):
wkv_states = torch.empty((N, B, H, C//H, C//H),
device=device,
dtype=torch.bfloat16)
shift_states = torch.empty((N, 2, B, C), device=device, dtype=dtype)
return BlockStateList(shift_states, wkv_states)
def __getitem__(self, layer: int):
return BlockState(
TimeMixState(self.shift_states[layer, 0], self.wkv_states[layer]),
ChannelMixState(self.shift_states[layer, 1]))
def __setitem__(self, layer: int, state: BlockState):
self.shift_states[layer, 0] = state.time_mix_state.shift_state
self.wkv_states[layer] = state.time_mix_state.wkv_state
self.shift_states[layer, 1] = state.channel_mix_state.shift_state

File diff suppressed because it is too large Load Diff

View File

@@ -4,6 +4,8 @@ from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
import re
import numpy as np
def my_save(args, trainer, dd, ff):
@@ -21,10 +23,7 @@ def my_save(args, trainer, dd, ff):
f" aws s3 mv {fff} s3://rwkv-world/{aa}-{fn} --quiet", shell=True
)
else:
if "deepspeed_stage_3" in args.strategy:
trainer.save_checkpoint(ff, weights_only=True)
else:
torch.save(dd, ff)
torch.save(dd, ff)
class train_callback(pl.Callback):
@@ -181,6 +180,30 @@ class train_callback(pl.Callback):
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
if args.LISA and (batch_idx + 1) % args.lisa_k == 0:
pl_module.requires_grad_(False)
select_layers = np.random.choice(
range(args.n_layer), args.lisa_r, replace=False
)
for name, module in pl_module.named_modules():
for pname, param in module.named_parameters():
if (
"emb" in pname
or "head" in pname
or ".ln" in pname
or "time" in pname
):
param.requires_grad = True
elif "ln_out" in pname:
param.requires_grad = True
match = re.search(r"\d+", pname)
if match:
number = int(match.group())
if number in select_layers:
param.requires_grad = True
break
# if args.batch_save==batch_idx :
# to_save_dict = pl_module.state_dict()
# for name, state in to_save_dict.items():
@@ -229,12 +252,22 @@ class train_callback(pl.Callback):
if "img" in name:
to_save_dict[name] = state
if args.state_tune or args.train_type == "state":
lora_dict = {}
for name, state in to_save_dict.items():
if "state" in name:
lora_dict[name] = state
to_save_dict = lora_dict
if args.lora:
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if "img" in name:
if len(args.load_model) == 0:
if "emb" in name or "head" in name or "ln" in name:
lora_dict[name] = state
if args.emb and "emb" in name:
lora_dict[name] = state
if (
".lora_" in name