This commit is contained in:
josc146
2024-05-28 22:35:47 +08:00
parent 3488d22d22
commit f05a4acb04
138 changed files with 29047 additions and 334 deletions

92
finetune/lora/v6/merge/merge.py vendored Normal file
View File

@@ -0,0 +1,92 @@
from collections import OrderedDict
import os
import sys
from typing import Dict
import typing
import torch
import bitsandbytes as bnb
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--type", default="pissa", type=str)
parser.add_argument("--base_model", default="", type=str)
parser.add_argument("--lora_init", default="none", type=str)
parser.add_argument("--lora_checkpoint", default="", type=str)
parser.add_argument("--output", default="", type=str)
parser.add_argument("--quant", default="none", type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--lora_alpha", default=16, type=int)
args = parser.parse_args()
device= args.device
base_model = args.base_model
init_lora= args.lora_init
lora= args.lora_checkpoint
output= args.output
quant= args.quant
lora_alpha = args.lora_alpha
with torch.no_grad():
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu')
# merge LoRA-only slim checkpoint into the main weights
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location='cpu')
if args.type=='pissa':
w_init_lora: Dict[str, torch.Tensor] = torch.load(init_lora, map_location='cpu')
for k in w_lora.keys():
w[k] = w_lora[k]
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
# merge LoRA weights
keys = list(w.keys())
for k in keys:
if k.endswith('.weight'):
prefix = k[:-len('.weight')]
lora_A = prefix + '.lora_A'
lora_B = prefix + '.lora_B'
init_lora_A = prefix + '.init_lora_A'
init_lora_B = prefix + '.init_lora_B'
if lora_A in keys:
assert lora_B in keys
print(f'merging {lora_A} and {lora_B} into {k}')
assert w[lora_B].shape[1] == w[lora_A].shape[0]
lora_r = w[lora_B].shape[1]
w[k] = w[k].to(device=device)
w[lora_A] = w[lora_A].to(device=device)
w[lora_B] = w[lora_B].to(device=device)
if args.type=='pissa':
w_init_lora[init_lora_A] = w_init_lora[init_lora_A].to(device=device)
w_init_lora[init_lora_B] = w_init_lora[init_lora_B].to(device=device)
if quant=='4bit':
qw,qs = bnb.functional.quantize_4bit(w[k]- w_init_lora[init_lora_B] @ w_init_lora[init_lora_A])
w[k] = (bnb.functional.dequantize_4bit(qw,quant_state=qs)).to(dtype=torch.bfloat16)
elif quant == 'nf4':
qw,qs = bnb.functional.quantize_nf4(w[k]- w_init_lora[init_lora_B] @ w_init_lora[init_lora_A])
w[k] = (bnb.functional.dequantize_nf4(qw,quant_state=qs)).to(dtype=torch.bfloat16)
elif quant == 'fp4':
qw,qs = bnb.functional.quantize_fp4(w[k]- w_init_lora[init_lora_B] @ w_init_lora[init_lora_A])
w[k] = (bnb.functional.dequantize_fp4(qw,quant_state=qs)).to(dtype=torch.bfloat16)
else:
w[k] = (w[k]- w_init_lora[init_lora_B] @ w_init_lora[init_lora_A]).to(dtype=torch.bfloat16)
w[k] += w[lora_B] @ w[lora_A]
else:
if quant=='4bit':
qw,qs = bnb.functional.quantize_4bit(w[k])
w[k] = (bnb.functional.dequantize_4bit(qw,quant_state=qs)).to(dtype=torch.bfloat16)
elif quant=='nf4':
qw,qs = bnb.functional.quantize_nf4(w[k])
w[k] = (bnb.functional.dequantize_nf4(qw,quant_state=qs)).to(dtype=torch.bfloat16)
elif quant=='fp4':
qw,qs = bnb.functional.quantize_fp4(w[k])
w[k] = (bnb.functional.dequantize_fp4(qw,quant_state=qs)).to(dtype=torch.bfloat16)
w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r)
output_w[k] = w[k].to(device='cpu', copy=True)
del w[k]
del w[lora_A]
del w[lora_B]
continue
if 'lora' not in k:
print(f'retaining {k}')
output_w[k] = w[k].clone()
del w[k]
torch.save(output_w, output)

52
finetune/lora/v6/merge/merge_lora.py vendored Normal file
View File

@@ -0,0 +1,52 @@
from collections import OrderedDict
import os
import sys
from typing import Dict
import typing
import torch
if '-h' in sys.argv or '--help' in sys.argv:
print(f'Usage: python3 {sys.argv[0]} [--use-gpu] <lora_alpha> <base_model.pth> <lora_checkpoint.pth> <output.pth>')
if sys.argv[1] == '--use-gpu':
device = 'cuda'
lora_alpha, base_model, lora, output = float(sys.argv[2]), sys.argv[3], sys.argv[4], sys.argv[5]
else:
device = 'cpu'
lora_alpha, base_model, lora, output = float(sys.argv[1]), sys.argv[2], sys.argv[3], sys.argv[4]
with torch.no_grad():
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu')
# merge LoRA-only slim checkpoint into the main weights
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location='cpu')
for k in w_lora.keys():
w[k] = w_lora[k]
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
# merge LoRA weights
keys = list(w.keys())
for k in keys:
if k.endswith('.weight'):
prefix = k[:-len('.weight')]
lora_A = prefix + '.lora_A'
lora_B = prefix + '.lora_B'
if lora_A in keys:
assert lora_B in keys
print(f'merging {lora_A} and {lora_B} into {k}')
assert w[lora_B].shape[1] == w[lora_A].shape[0]
lora_r = w[lora_B].shape[1]
w[k] = w[k].to(device=device)
w[lora_A] = w[lora_A].to(device=device)
w[lora_B] = w[lora_B].to(device=device)
w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r)
output_w[k] = w[k].to(device='cpu', copy=True)
del w[k]
del w[lora_A]
del w[lora_B]
continue
if 'lora' not in k:
print(f'retaining {k}')
output_w[k] = w[k].clone()
del w[k]
torch.save(output_w, output)

58
finetune/lora/v6/merge/merge_pissa.py vendored Normal file
View File

@@ -0,0 +1,58 @@
from collections import OrderedDict
import os
import sys
from typing import Dict
import typing
import torch
if '-h' in sys.argv or '--help' in sys.argv:
print(f'Usage: python3 {sys.argv[0]} [--use-gpu] <base_model.pth> <lora_init.pth> <lora_checkpoint.pth> <output.pth>')
if sys.argv[1] == '--use-gpu':
device = 'cuda'
base_model, init_lora, lora, output = sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5]
else:
device = 'cpu'
base_model, init_lora, lora, output = sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4]
with torch.no_grad():
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu')
# merge LoRA-only slim checkpoint into the main weights
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location='cpu')
w_init_lora: Dict[str, torch.Tensor] = torch.load(init_lora, map_location='cpu')
for k in w_lora.keys():
w[k] = w_lora[k]
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
# merge LoRA weights
keys = list(w.keys())
for k in keys:
if k.endswith('.weight'):
prefix = k[:-len('.weight')]
lora_A = prefix + '.lora_A'
lora_B = prefix + '.lora_B'
init_lora_A = prefix + '.init_lora_A'
init_lora_B = prefix + '.init_lora_B'
if lora_A in keys:
assert lora_B in keys
print(f'merging {lora_A} and {lora_B} into {k}')
assert w[lora_B].shape[1] == w[lora_A].shape[0]
lora_r = w[lora_B].shape[1]
w[k] = w[k].to(device=device)
w[lora_A] = w[lora_A].to(device=device)
w[lora_B] = w[lora_B].to(device=device)
w_init_lora[init_lora_A] = w_init_lora[init_lora_A].to(device=device)
w_init_lora[init_lora_B] = w_init_lora[init_lora_B].to(device=device)
w[k] = (w[k]- w_init_lora[init_lora_B] @ w_init_lora[init_lora_A]).to(dtype=torch.bfloat16)
w[k] += w[lora_B] @ w[lora_A]
output_w[k] = w[k].to(device='cpu', copy=True)
del w[k]
del w[lora_A]
del w[lora_B]
continue
if 'lora' not in k:
print(f'retaining {k}')
output_w[k] = w[k].clone()
del w[k]
torch.save(output_w, output)

36
finetune/lora/v6/merge/merge_state.py vendored Normal file
View File

@@ -0,0 +1,36 @@
from collections import OrderedDict
import os
import sys
from typing import Dict
import typing
import torch
import bitsandbytes as bnb
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--base_model", default="", type=str)
parser.add_argument("--state_checkpoint", default="", type=str)
parser.add_argument("--output", default="", type=str)
# parser.add_argument("--quant", default="none", type=str)
parser.add_argument("--device", default="cuda", type=str)
# parser.add_argument("--lora_alpha", default=16, type=int)
args = parser.parse_args()
device= args.device
base_model = args.base_model
state= args.state_checkpoint
output= args.output
with torch.no_grad():
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu')
# merge LoRA-only slim checkpoint into the main weights
w_state: Dict[str, torch.Tensor] = torch.load(state, map_location='cpu')
for k in w_state.keys():
print(k)
w[k] = w_state[k]
# merge LoRA weights
for k in w.keys():
print(k)
torch.save(w, output)