This commit is contained in:
12
finetune/lora/v6/fla/ops/linear_attn/__init__.py
vendored
Normal file
12
finetune/lora/v6/fla/ops/linear_attn/__init__.py
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from .chunk import chunk_linear_attn
|
||||
from .chunk_fuse import fused_chunk_linear_attn
|
||||
from .recurrent_fuse import fused_recurrent_linear_attn
|
||||
|
||||
__all__ = [
|
||||
'chunk_linear_attn',
|
||||
'fused_chunk_linear_attn',
|
||||
'fused_recurrent_linear_attn'
|
||||
]
|
||||
|
||||
359
finetune/lora/v6/fla/ops/linear_attn/chunk.py
vendored
Normal file
359
finetune/lora/v6/fla/ops/linear_attn/chunk.py
vendored
Normal file
@@ -0,0 +1,359 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) 2023, Yu Zhang, Songlin Yang
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
from fla.utils import contiguous
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def normalize_output(q, k, o):
|
||||
k = k.transpose(-2, -1)
|
||||
k = k.cumsum(-1)
|
||||
k = k.transpose(-2, -1)
|
||||
z = (q * k).sum(-1, keepdim=True)
|
||||
return o / (z + 1e-5)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def chunk_linear_attn_fwd_kernel_h(
|
||||
k,
|
||||
v,
|
||||
h,
|
||||
initial_state, # initial state of the chunk [B, H, D_head_K, D_head_V]
|
||||
final_state, # final state of the chunk [B, H, D_head_K, D_head_V]
|
||||
s_qk_h,
|
||||
s_qk_t,
|
||||
s_qk_d,
|
||||
s_vo_h,
|
||||
s_vo_t,
|
||||
s_vo_d,
|
||||
s_h_h,
|
||||
s_h_t,
|
||||
H: tl.constexpr,
|
||||
T: tl.constexpr,
|
||||
K: tl.constexpr,
|
||||
V: tl.constexpr,
|
||||
BT: tl.constexpr,
|
||||
BK: tl.constexpr,
|
||||
BV: tl.constexpr,
|
||||
NT: tl.constexpr,
|
||||
USE_INITIAL_STATE: tl.constexpr,
|
||||
STORE_FINAL_STATE: tl.constexpr
|
||||
):
|
||||
i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
# [BK, BV]
|
||||
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
|
||||
if USE_INITIAL_STATE:
|
||||
p_h0 = tl.make_block_ptr(initial_state + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
||||
|
||||
for i_t in range(NT):
|
||||
p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
||||
p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
|
||||
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
||||
# [BK, BT]
|
||||
b_k = tl.load(p_k, boundary_check=(0, 1))
|
||||
# [BT, BV]
|
||||
b_v = tl.load(p_v, boundary_check=(0, 1))
|
||||
# [BK, BV]
|
||||
b_h += tl.dot(b_k, b_v, allow_tf32=False)
|
||||
|
||||
if STORE_FINAL_STATE:
|
||||
p_ht = tl.make_block_ptr(final_state + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
||||
|
||||
|
||||
@triton.jit
|
||||
def chunk_linear_attn_fwd_kernel_o(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
h,
|
||||
o,
|
||||
s_qk_h,
|
||||
s_qk_t,
|
||||
s_qk_d,
|
||||
s_vo_h,
|
||||
s_vo_t,
|
||||
s_vo_d,
|
||||
s_h_h,
|
||||
s_h_t,
|
||||
scale,
|
||||
H: tl.constexpr,
|
||||
T: tl.constexpr,
|
||||
K: tl.constexpr,
|
||||
V: tl.constexpr,
|
||||
BT: tl.constexpr,
|
||||
BK: tl.constexpr,
|
||||
BV: tl.constexpr
|
||||
):
|
||||
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
o_i = tl.arange(0, BT)
|
||||
m_s = o_i[:, None] >= o_i[None, :]
|
||||
|
||||
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
||||
b_s = tl.zeros([BT, BT], dtype=tl.float32)
|
||||
for i_k in range(tl.cdiv(K, BK)):
|
||||
p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
||||
p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
||||
p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
# [BT, BK]
|
||||
b_q = tl.load(p_q, boundary_check=(0, 1))
|
||||
# [BK, BT]
|
||||
b_k = tl.load(p_k, boundary_check=(0, 1))
|
||||
# [BK, BV]
|
||||
b_h = tl.load(p_h, boundary_check=(0, 1))
|
||||
b_o += tl.dot(b_q, b_h, allow_tf32=False)
|
||||
b_s += tl.dot(b_q, b_k, allow_tf32=False)
|
||||
|
||||
b_s = tl.where(m_s, b_s, 0)
|
||||
p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
b_v = tl.load(p_v, boundary_check=(0, 1))
|
||||
b_o = (b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) * scale
|
||||
p_o = tl.make_block_ptr(o + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
||||
|
||||
|
||||
@triton.jit
|
||||
def chunk_linear_attn_bwd_kernel_dh(
|
||||
q,
|
||||
do,
|
||||
dh,
|
||||
s_qk_h,
|
||||
s_qk_t,
|
||||
s_qk_d,
|
||||
s_vo_h,
|
||||
s_vo_t,
|
||||
s_vo_d,
|
||||
s_h_h,
|
||||
s_h_t,
|
||||
scale,
|
||||
H: tl.constexpr,
|
||||
T: tl.constexpr,
|
||||
K: tl.constexpr,
|
||||
V: tl.constexpr,
|
||||
BT: tl.constexpr,
|
||||
BK: tl.constexpr,
|
||||
BV: tl.constexpr,
|
||||
NT: tl.constexpr
|
||||
):
|
||||
i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
# [BK, BV]
|
||||
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
for i_t in range(NT - 1, -1, -1):
|
||||
p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
||||
p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
|
||||
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
||||
# [BK, BT]
|
||||
b_q = tl.load(p_q, boundary_check=(0, 1))
|
||||
b_q = (b_q * scale).to(b_q.dtype)
|
||||
# [BT, V]
|
||||
b_do = tl.load(p_do, boundary_check=(0, 1))
|
||||
# [BK, BV]
|
||||
b_dh += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def chunk_linear_attn_bwd_kernel_dqkv(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
h,
|
||||
do,
|
||||
dh,
|
||||
dq,
|
||||
dk,
|
||||
dv,
|
||||
s_qk_h,
|
||||
s_qk_t,
|
||||
s_qk_d,
|
||||
s_vo_h,
|
||||
s_vo_t,
|
||||
s_vo_d,
|
||||
s_h_h,
|
||||
s_h_t,
|
||||
scale,
|
||||
H: tl.constexpr,
|
||||
T: tl.constexpr,
|
||||
K: tl.constexpr,
|
||||
V: tl.constexpr,
|
||||
BT: tl.constexpr,
|
||||
BK: tl.constexpr,
|
||||
BV: tl.constexpr,
|
||||
NT: tl.constexpr
|
||||
):
|
||||
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
n_bh = tl.num_programs(2)
|
||||
o_i = tl.arange(0, BT)
|
||||
|
||||
p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
||||
p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
||||
|
||||
b_q = tl.load(p_q, boundary_check=(0, 1))
|
||||
b_k = tl.load(p_k, boundary_check=(0, 1))
|
||||
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale
|
||||
b_s = tl.where(o_i[:, None] <= o_i[None, :], b_s, 0)
|
||||
|
||||
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
||||
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
||||
b_ds = tl.zeros([BT, BT], dtype=tl.float32)
|
||||
for i_v in range(tl.cdiv(V, BV)):
|
||||
p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
p_h = tl.make_block_ptr(h + i_bh * s_h_h, (V, NT * K), (1, s_h_t), (i_v * BV, i_t * K + i_k * BK), (BV, BK), (0, 1))
|
||||
p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h, (NT * K, V), (s_h_t, 1), (i_t * K + i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
p_dv = tl.make_block_ptr(dv + (i_k*n_bh+i_bh)*s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
# [BT, BV]
|
||||
b_v = tl.load(p_v, boundary_check=(0, 1))
|
||||
b_do = tl.load(p_do, boundary_check=(0, 1))
|
||||
# [BV, BK]
|
||||
b_h = tl.load(p_h, boundary_check=(0, 1))
|
||||
# [BK, BV]
|
||||
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
||||
# [BT, BT]
|
||||
b_ds += tl.dot(b_do, tl.trans(b_v), allow_tf32=False)
|
||||
# [BT, BK]
|
||||
b_dq += tl.dot(b_do, b_h, allow_tf32=False) * scale
|
||||
b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False)
|
||||
# [BT, BV]
|
||||
b_dv = tl.dot(b_k, b_dh, allow_tf32=False) + tl.dot(b_s.to(b_q.dtype), b_do, allow_tf32=False)
|
||||
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
||||
# [BT, BT]
|
||||
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale, 0).to(b_q.dtype)
|
||||
# [BT, BK]
|
||||
b_dq += tl.dot(b_ds, b_k, allow_tf32=False)
|
||||
b_dk += tl.trans(tl.dot(b_q, b_ds, allow_tf32=False))
|
||||
|
||||
p_dq = tl.make_block_ptr(dq + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
||||
p_dk = tl.make_block_ptr(dk + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
||||
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
||||
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
||||
|
||||
|
||||
class ChunkLinearAttentionFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
@contiguous
|
||||
def forward(ctx, q, k, v, scale, initial_state, output_final_state):
|
||||
B, H, T, K, V = *q.shape, v.shape[-1]
|
||||
BT = 64
|
||||
BK, BV = min(64, triton.next_power_of_2(K)), min(64, triton.next_power_of_2(V))
|
||||
NT, NK, NV = triton.cdiv(T, BT), triton.cdiv(K, BK), triton.cdiv(V, BV)
|
||||
num_stages = 1
|
||||
num_warps = 4 if BK == 64 else 2
|
||||
ctx.scale = scale
|
||||
|
||||
final_state = None
|
||||
if output_final_state:
|
||||
final_state = q.new_empty(B, H, K, V, dtype=torch.float32, requires_grad=False)
|
||||
|
||||
h = q.new_empty(B, H, NT * K, V)
|
||||
grid = (NK, NV, B * H)
|
||||
chunk_linear_attn_fwd_kernel_h[grid](
|
||||
k, v, h, initial_state, final_state,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
h.stride(1), h.stride(2),
|
||||
H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT,
|
||||
USE_INITIAL_STATE=initial_state is not None,
|
||||
STORE_FINAL_STATE=output_final_state,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
grid = (NV, NT, B * H)
|
||||
o = torch.empty_like(v)
|
||||
chunk_linear_attn_fwd_kernel_o[grid](
|
||||
q, k, v, h, o,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
h.stride(1), h.stride(2),
|
||||
scale,
|
||||
H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
|
||||
ctx.save_for_backward(q, k, v, h)
|
||||
return o.to(q.dtype), final_state
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
@contiguous
|
||||
def backward(ctx, do, d_ht=None):
|
||||
q, k, v, h = ctx.saved_tensors
|
||||
|
||||
B, H, T, K, V = *q.shape, v.shape[-1]
|
||||
BT = 64
|
||||
BK, BV = min(64, triton.next_power_of_2(K)), min(32 if q.dtype == torch.float32 else 64, triton.next_power_of_2(V))
|
||||
NT, NK, NV = triton.cdiv(T, BT), triton.cdiv(K, BK), triton.cdiv(V, BV)
|
||||
num_stages = 1
|
||||
num_warps = 4 if BK == 64 else 2
|
||||
scale = ctx.scale
|
||||
|
||||
dh = q.new_empty(B, H, NT * K, V)
|
||||
grid = (NK, NV, B * H)
|
||||
chunk_linear_attn_bwd_kernel_dh[grid](
|
||||
q, do, dh,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
dh.stride(1), dh.stride(2),
|
||||
scale,
|
||||
H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
|
||||
grid = (NK, NT, B * H)
|
||||
dq = torch.empty_like(q)
|
||||
dk = torch.empty_like(k)
|
||||
dv = v.new_empty(NK, *v.shape)
|
||||
num_stages = 1
|
||||
num_warps = 4 if BK == 64 else 2
|
||||
chunk_linear_attn_bwd_kernel_dqkv[grid](
|
||||
q, k, v, h, do, dh, dq, dk, dv,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
dh.stride(1), dh.stride(2),
|
||||
scale,
|
||||
H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
dv = dv.sum(0)
|
||||
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None, None, None
|
||||
|
||||
|
||||
def chunk_linear_attn(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
scale: float = -1,
|
||||
initial_state: torch.Tensor = None,
|
||||
output_final_state: bool = False,
|
||||
normalize: bool = True
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if scale == -1:
|
||||
scale = q.shape[-1] ** -0.5
|
||||
if initial_state is not None:
|
||||
initial_state = initial_state.detach()
|
||||
o, final_state = ChunkLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state)
|
||||
|
||||
if normalize:
|
||||
o = normalize_output(q * scale, k, o)
|
||||
|
||||
return o, final_state
|
||||
326
finetune/lora/v6/fla/ops/linear_attn/chunk_fuse.py
vendored
Normal file
326
finetune/lora/v6/fla/ops/linear_attn/chunk_fuse.py
vendored
Normal file
@@ -0,0 +1,326 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) 2023, Yu Zhang, Songlin Yang
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from packaging import version
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
from fla.utils import contiguous
|
||||
|
||||
# on-the-fly computation without materializing hidden statets into HBMs
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def normalize_output(q, k, o):
|
||||
k = k.transpose(-2, -1)
|
||||
k = k.cumsum(-1)
|
||||
k = k.transpose(-2, -1)
|
||||
z = (q * k).sum(-1, keepdim=True)
|
||||
return o / (z + 1e-5)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def fused_chunk_linear_attn_fwd_kernel(
|
||||
# B: batch_size, H: n_heads, T: seq_len, D: d_head
|
||||
q, # query [B, H, L, D_head_K]
|
||||
k, # key [B, H, L, D_head_V]
|
||||
v, # value [B, H, L, D_head_V]
|
||||
o, # output [B, H, L, D_head_V]
|
||||
initial_state, # initial state of the chunk [B, H, D_head_K, D_head_V]
|
||||
final_state, # final state of the chunk [B, H, D_head_K, D_head_V]
|
||||
s_qk_h, # stride size: L * D_head_K
|
||||
s_qk_t, # stride size: D_head_K
|
||||
s_qk_d, # stride size: 1
|
||||
s_vo_h, # stride size: L * D_head_V
|
||||
s_vo_t, # stride size: D_head_V
|
||||
s_vo_d, # stride size: 1
|
||||
B, # batch size
|
||||
H, # n_heads
|
||||
T, # seq_len
|
||||
scale, # D_head_K ** -0.5
|
||||
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
|
||||
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
||||
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
||||
DK: tl.constexpr, # D_head_K
|
||||
DV: tl.constexpr, # D_head_V
|
||||
USE_INITIAL_STATE: tl.constexpr,
|
||||
STORE_FINAL_STATE: tl.constexpr,
|
||||
CHECK: tl.constexpr
|
||||
):
|
||||
# indices
|
||||
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
o_i = tl.arange(0, BT)
|
||||
|
||||
# [BT, BT]
|
||||
m_s = o_i[:, None] >= o_i[None, :]
|
||||
# [BK, BV]
|
||||
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
|
||||
# make block pointers
|
||||
p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (0, i_k * BK), (BT, BK), (1, 0))
|
||||
p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, 0), (BK, BT), (0, 1))
|
||||
p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (0, i_v * BV), (BT, BV), (1, 0))
|
||||
p_o = tl.make_block_ptr(o + (i_bh+i_k*B*H) * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (0, i_v * BV), (BT, BV), (1, 0))
|
||||
|
||||
if USE_INITIAL_STATE:
|
||||
p_h = tl.make_block_ptr(initial_state + i_bh * DK * DV, (DK, DV), (DV, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
||||
|
||||
for i in range(0, tl.cdiv(T, BT)):
|
||||
# [BK, BT]
|
||||
b_k = tl.load(p_k, boundary_check=(0, 1))
|
||||
# [BT, BV]
|
||||
b_v = tl.load(p_v, boundary_check=(0, 1))
|
||||
# [BT, BK]
|
||||
b_q = tl.load(p_q, boundary_check=(0, 1))
|
||||
b_q = (b_q * scale).to(b_k.dtype)
|
||||
|
||||
# [BT, BT]
|
||||
b_s = tl.dot(b_q, b_k, allow_tf32=False)
|
||||
b_s = tl.where(m_s, b_s, 0)
|
||||
# [BT, BV]
|
||||
b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
|
||||
if CHECK and i == 0:
|
||||
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
|
||||
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
|
||||
else:
|
||||
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
|
||||
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
|
||||
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
||||
p_q = tl.advance(p_q, (BT, 0))
|
||||
p_k = tl.advance(p_k, (0, BT))
|
||||
p_v = tl.advance(p_v, (BT, 0))
|
||||
p_o = tl.advance(p_o, (BT, 0))
|
||||
|
||||
if STORE_FINAL_STATE:
|
||||
p_final = tl.make_block_ptr(final_state + i_bh * DK * DV, (DK, DV), (DV, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
||||
tl.store(p_final, b_h.to(p_final.dtype.element_ty), boundary_check=(0, 1))
|
||||
|
||||
|
||||
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
|
||||
@triton.jit
|
||||
def fused_chunk_linear_attn_bwd_kernel(
|
||||
# B: batch_size, H: n_heads, T: seq_len, D: d_head
|
||||
# NV: number of split in the V dimension. NK: number of split in the K dimension
|
||||
q, # query [B, H, L, D_head_K]
|
||||
k, # key [B, H, L, D_head_V]
|
||||
v, # value [B, H, L, D_head_V]
|
||||
do, # gradient of output [B, H, L, D_head_V]
|
||||
dq, # gradient of query [NV, B, H, L, D_head_K]
|
||||
dk, # gradient of key [NV, B, H, L, D_head_K]
|
||||
dv, # gradient of value [NK, B, H, L, D_head_V]
|
||||
|
||||
initial_state, # initial state of the chunk [B, H, D_head_K, D_head_V]
|
||||
|
||||
s_qk_h, # stride size: L * D_head_K
|
||||
s_qk_t, # stride size: D_head_K
|
||||
s_qk_d, # stride size: 1
|
||||
s_vo_h, # stride size: L * D_head_V
|
||||
s_vo_t, # stride size: D_head_V
|
||||
s_vo_d, # stride size: 1
|
||||
B, # batch_size
|
||||
H, # n_heads
|
||||
T, # seq_len
|
||||
scale, # D_head_K ** -0.5
|
||||
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
|
||||
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
||||
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
||||
DK: tl.constexpr, # D_head_K
|
||||
DV: tl.constexpr, # D_head_V
|
||||
USE_INITIAL_STATE: tl.constexpr,
|
||||
CHECK: tl.constexpr
|
||||
):
|
||||
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
o_i = tl.arange(0, BT)
|
||||
|
||||
m_s = o_i[:, None] >= o_i[None, :]
|
||||
# [BV, BK]
|
||||
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
||||
if USE_INITIAL_STATE:
|
||||
p_h = tl.make_block_ptr(initial_state + i_bh * DK * DV, (DV, DK), (1, DV), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
||||
b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
||||
|
||||
for i in range(0, tl.cdiv(T, BT)):
|
||||
p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
||||
p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (DV, T), (s_vo_d, s_vo_t), (i_v * BV, i * BT), (BV, BT), (0, 1))
|
||||
p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i*BT, i_k*BK), (BT, BK), (1, 0))
|
||||
|
||||
# [BT, DK]
|
||||
b_k = tl.load(p_k, boundary_check=(0, 1))
|
||||
# [DV, BT]
|
||||
b_v = tl.load(p_v, boundary_check=(0, 1))
|
||||
# [BT, DV]
|
||||
b_do = tl.load(p_do, boundary_check=(0, 1))
|
||||
|
||||
# [BT, BT]
|
||||
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
||||
b_ds = tl.where(m_s, b_ds, 0)
|
||||
# [BT, DK]
|
||||
b_dq = tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False)
|
||||
# [DV, DK]
|
||||
if CHECK and i == 0:
|
||||
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
|
||||
b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False)
|
||||
else:
|
||||
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
|
||||
b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False)
|
||||
b_dq *= scale
|
||||
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
||||
|
||||
# sync threads
|
||||
b_h = None
|
||||
tl.debug_barrier()
|
||||
# [BK, BV]
|
||||
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
m_s = o_i[:, None] <= o_i[None, :]
|
||||
for i in range(1, tl.cdiv(T, BT) + 1):
|
||||
p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, T - i * BT), (BK, BT), (0, 1))
|
||||
p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (T - i * BT, i_k * BK), (BT, BK), (1, 0))
|
||||
p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
|
||||
p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (T - i*BT, i_k*BK), (BT, BK), (1, 0))
|
||||
p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (T - i*BT, i_v*BV), (BT, BV), (1, 0))
|
||||
# [DK, BT]
|
||||
b_q = tl.load(p_q, boundary_check=(0, 1))
|
||||
# [BT, DK]
|
||||
b_k = tl.load(p_k, boundary_check=(0, 1))
|
||||
# [BT, DV]
|
||||
b_v = tl.load(p_v, boundary_check=(0, 1))
|
||||
b_do = tl.load(p_do, boundary_check=(0, 1))
|
||||
|
||||
# b_dd = (b_do]).to(b_do.dtype)
|
||||
|
||||
# [BT, BT]
|
||||
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False)
|
||||
b_ds = tl.where(m_s, b_ds, 0).to(b_q.dtype)
|
||||
# [BT, BT]
|
||||
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale
|
||||
b_s = tl.where(m_s, b_s, 0).to(b_q.dtype)
|
||||
# [BT, DK]
|
||||
b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False)
|
||||
# [BT, DV]
|
||||
b_dv = tl.dot(b_s, b_do, allow_tf32=False)
|
||||
if CHECK and i == 1:
|
||||
b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False)
|
||||
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
|
||||
b_dh += tl.dot(b_q, b_do, allow_tf32=False)
|
||||
else:
|
||||
b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False)
|
||||
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
|
||||
b_dh += tl.dot(b_q, b_do, allow_tf32=False)
|
||||
|
||||
tl.store(p_dk, (b_dk * scale).to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
||||
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
||||
|
||||
|
||||
class FusedChunkLinearAttentionFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
@contiguous
|
||||
@custom_fwd
|
||||
def forward(ctx, q, k, v, scale, initial_state, output_final_state):
|
||||
batch_size, n_heads, seq_len, d_head_qk = q.shape
|
||||
d_head_v = v.shape[-1]
|
||||
ctx.scale = scale
|
||||
BT = 64
|
||||
BK, BV = min(triton.next_power_of_2(d_head_qk), 64), min(triton.next_power_of_2(d_head_v), 64)
|
||||
NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV)
|
||||
num_stages = 1
|
||||
num_warps = 4
|
||||
o = q.new_empty(NK, batch_size, n_heads, seq_len, d_head_v)
|
||||
if output_final_state:
|
||||
final_state = q.new_empty(batch_size, n_heads, d_head_qk, d_head_v, dtype=torch.float32, requires_grad=False)
|
||||
else:
|
||||
final_state = None
|
||||
# the bug still exists even for Triton 2.2 on H100 GPUs
|
||||
# so we always enable initial checks
|
||||
CHECK = True
|
||||
if version.parse(triton.__version__) < version.parse('2.2.0'):
|
||||
import warnings
|
||||
warnings.warn(
|
||||
"Triton<2.2.0 detected for running this kernel, "
|
||||
"which is known to have some weird compiler issues (refer to https://github.com/openai/triton/issues/2852) "
|
||||
"that lead to significant precision loss. "
|
||||
"We've add some initial condition checks to resolve this, sadly at the sacrifice of the speed. "
|
||||
"For optimal performance, it is recommended to install Triton>=2.2.0 (if possible)."
|
||||
)
|
||||
CHECK = True
|
||||
|
||||
grid = (NV, NK, batch_size * n_heads)
|
||||
fused_chunk_linear_attn_fwd_kernel[grid](
|
||||
q, k, v, o, initial_state, final_state,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
batch_size, n_heads, seq_len, scale,
|
||||
BT=BT, DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV,
|
||||
USE_INITIAL_STATE=initial_state is not None,
|
||||
STORE_FINAL_STATE=output_final_state,
|
||||
CHECK=CHECK,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
|
||||
o = o.sum(0)
|
||||
ctx.save_for_backward(q, k, v, initial_state)
|
||||
ctx.CHECK = CHECK
|
||||
return o.to(q.dtype), final_state
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
@contiguous
|
||||
def backward(ctx, do, d_final_state=None):
|
||||
q, k, v, initial_state = ctx.saved_tensors
|
||||
batch_size, n_heads, seq_len, d_head_qk = q.shape
|
||||
d_head_v = v.shape[-1]
|
||||
scale = ctx.scale
|
||||
|
||||
BT = 64
|
||||
BK, BV = min(triton.next_power_of_2(d_head_qk), 64), min(triton.next_power_of_2(d_head_v), 64)
|
||||
NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV)
|
||||
num_stages = 1
|
||||
num_warps = 4
|
||||
|
||||
dq = q.new_empty(NV, batch_size, n_heads, seq_len, d_head_qk)
|
||||
dk = q.new_empty(NV, batch_size, n_heads, seq_len, d_head_qk)
|
||||
dv = q.new_empty(NK, batch_size, n_heads, seq_len, d_head_v)
|
||||
grid = (NV, NK, batch_size * n_heads)
|
||||
|
||||
fused_chunk_linear_attn_bwd_kernel[grid](
|
||||
q, k, v, do, dq, dk, dv, initial_state,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
batch_size, n_heads, seq_len, scale,
|
||||
BT=BT, DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV,
|
||||
USE_INITIAL_STATE=initial_state is not None,
|
||||
CHECK=ctx.CHECK,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
dq = dq.sum(0)
|
||||
dk = dk.sum(0)
|
||||
dv = dv.sum(0)
|
||||
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None, None, None
|
||||
|
||||
|
||||
def fused_chunk_linear_attn(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
scale: float = -1,
|
||||
initial_state: torch.Tensor = None,
|
||||
output_final_state: bool = False,
|
||||
normalize: bool = True
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if initial_state is not None:
|
||||
initial_state = initial_state.detach()
|
||||
if scale == -1:
|
||||
scale = q.shape[-1] ** -0.5
|
||||
o, final_state = FusedChunkLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state)
|
||||
if normalize:
|
||||
o = normalize_output(q * scale, k, o)
|
||||
return o, final_state
|
||||
20
finetune/lora/v6/fla/ops/linear_attn/naive.py
vendored
Normal file
20
finetune/lora/v6/fla/ops/linear_attn/naive.py
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
def torch_chunk_linear_attn(q, k, v, chunk_size=64):
|
||||
q = rearrange(q, 'b h (n c) d -> b h n c d', c = chunk_size) * (q.shape[-1] **-0.5)
|
||||
k = rearrange(k, 'b h (n c) d -> b h n c d', c = chunk_size)
|
||||
v = rearrange(v, 'b h (n c) d -> b h n c d', c = chunk_size)
|
||||
kv = k.transpose(-1, -2) @ v
|
||||
kv = kv.cumsum(2)
|
||||
kv = torch.cat([
|
||||
torch.zeros_like(kv[:, :, :1]),
|
||||
kv[:, :, :-1]
|
||||
], dim=2)
|
||||
inter = q @ kv
|
||||
intra = ((q @ k.transpose(-1, -2)).masked_fill_(torch.triu(torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device), diagonal=1), 0)) @ v
|
||||
o = inter + intra
|
||||
return rearrange(o, 'b h n c d -> b h (n c) d')
|
||||
284
finetune/lora/v6/fla/ops/linear_attn/recurrent_fuse.py
vendored
Normal file
284
finetune/lora/v6/fla/ops/linear_attn/recurrent_fuse.py
vendored
Normal file
@@ -0,0 +1,284 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) 2023, Yu Zhang, Songlin Yang
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
from fla.utils import contiguous
|
||||
|
||||
# on-the-fly computation without materializing hidden statets into HBMs
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def normalize_output(q, k, o):
|
||||
k = k.transpose(-2, -1)
|
||||
k = k.cumsum(-1)
|
||||
k = k.transpose(-2, -1)
|
||||
z = (q * k).sum(-1, keepdim=True)
|
||||
return o / (z + 1e-5)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def fused_recurrent_linear_attn_fwd_kernel(
|
||||
# B: batch_size, H: n_heads, T: seq_len, D: d_head
|
||||
q, # query [B, H, L, D_head_K]
|
||||
k, # key [B, H, L, D_head_V]
|
||||
v, # value [B, H, L, D_head_V]
|
||||
o, # output [B, H, L, D_head_V]
|
||||
initial_state,
|
||||
final_state, # final hidden state [B, H, D_head_K, D_head_V]
|
||||
|
||||
s_qk_h, # stride size: L * D_head_K
|
||||
s_qk_t, # stride size: D_head_K
|
||||
s_qk_d, # stride size: 1
|
||||
|
||||
s_vo_h, # stride size: L * D_head_V
|
||||
s_vo_t, # stride size: D_head_V
|
||||
s_vo_d, # stride size: 1
|
||||
|
||||
B, # batch size
|
||||
H, # n_heads
|
||||
T, # seq_len
|
||||
scale, # D_head_K ** -0.5
|
||||
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
||||
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
||||
DK: tl.constexpr, # D_head_K
|
||||
DV: tl.constexpr, # D_head_V
|
||||
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
||||
STORE_FINAL_STATE: tl.constexpr, # whether to store final state
|
||||
):
|
||||
# indices
|
||||
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
p_q = q + i_bh * s_qk_h + i_k * BK + tl.arange(0, BK)
|
||||
p_k = k + i_bh * s_qk_h + i_k * BK + tl.arange(0, BK)
|
||||
p_v = v + i_bh * s_vo_h + i_v * BV + tl.arange(0, BV)
|
||||
p_o = o + (i_bh + i_k * B * H) * s_vo_h + i_v * BV + tl.arange(0, BV)
|
||||
|
||||
mask_bk = (i_k * BK + tl.arange(0, BK)) < DK
|
||||
mask_bv = (i_v * BV + tl.arange(0, BV)) < DV
|
||||
mask_kv = mask_bk[None, :] & mask_bv[:, None]
|
||||
|
||||
h = tl.zeros([BV, BK], dtype=tl.float32)
|
||||
|
||||
if USE_INITIAL_STATE:
|
||||
p_init_s = initial_state + i_bh * DK * DV + \
|
||||
(i_k * BK + tl.arange(0, BK)[None, :]) * \
|
||||
DV + (i_v * BV + tl.arange(0, BV)[:, None])
|
||||
h += tl.load(p_init_s, mask=mask_kv, other=0).to(tl.float32)
|
||||
|
||||
for _ in range(0, T):
|
||||
_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
||||
_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
||||
_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
||||
|
||||
h += _k[None, :] * _v[:, None]
|
||||
_o = h * _q[None, :]
|
||||
_o = tl.sum(_o, axis=1)
|
||||
tl.store(p_o, _o.to(p_o.dtype.element_ty), mask=mask_bv)
|
||||
|
||||
p_q += DK
|
||||
p_k += DK
|
||||
p_o += DV
|
||||
p_v += DV
|
||||
|
||||
if STORE_FINAL_STATE:
|
||||
p_final_s = final_state + i_bh * DK * DV + \
|
||||
(i_k * BK + tl.arange(0, BK)[None, :]) * \
|
||||
DV + (i_v * BV + tl.arange(0, BV)[:, None])
|
||||
tl.store(p_final_s, h.to(p_final_s.dtype.element_ty), mask=mask_kv)
|
||||
|
||||
|
||||
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
|
||||
@triton.jit
|
||||
def fused_recurrent_linear_attn_bwd_kernel(
|
||||
# B: batch_size, H: n_heads, T: seq_len, D: d_head
|
||||
# NV: number of split in the V dimension. NK: number of split in the K dimension
|
||||
q, # query [B, H, L, D_head_K]
|
||||
k, # key [B, H, L, D_head_V]
|
||||
v, # value [B, H, L, D_head_V]
|
||||
|
||||
do, # gradient of output [B, H, L, D_head_V]
|
||||
dq, # gradient of query [NV, B, H, L, D_head_K]
|
||||
dk, # gradient of key [NV, B, H, L, D_head_K]
|
||||
dv, # gradient of value [NK, B, H, L, D_head_V]
|
||||
|
||||
# initial hidden state initialization [B, H, D_head_K, D_head_V]
|
||||
initial_state,
|
||||
|
||||
s_qk_h, # stride size: L * D_head_K
|
||||
s_qk_t, # stride size: D_head_K
|
||||
s_qk_d, # stride size: 1
|
||||
|
||||
s_vo_h, # stride size: L * D_head_V
|
||||
s_vo_t, # stride size: D_head_V
|
||||
s_vo_d, # stride size: 1
|
||||
|
||||
B, # batch_size
|
||||
H, # n_heads
|
||||
T, # seq_len
|
||||
scale, # D_head_K ** -0.5
|
||||
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
||||
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
||||
DK: tl.constexpr, # D_head_K
|
||||
DV: tl.constexpr, # D_head_V
|
||||
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
||||
):
|
||||
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
p_q = q + i_bh * s_qk_h + i_k * BK + tl.arange(0, BK)
|
||||
p_k = k + i_bh * s_qk_h + i_k * BK + tl.arange(0, BK)
|
||||
p_v = v + i_bh * s_vo_h + i_v * BV + tl.arange(0, BV)
|
||||
p_do = do + i_bh * s_vo_h + i_v * BV + tl.arange(0, BV)
|
||||
|
||||
p_dq = dq + (i_bh + i_v * B * H) * s_qk_h + i_k * BK + tl.arange(0, BK)
|
||||
mask_bk = i_k * BK + tl.arange(0, BK) < DK
|
||||
mask_bv = i_v * BV + tl.arange(0, BV) < DV
|
||||
|
||||
h = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
|
||||
if USE_INITIAL_STATE:
|
||||
mask_kv = mask_bk[:, None] & mask_bv[None, :]
|
||||
p_init_s = initial_state + i_bh * DK * DV + \
|
||||
(i_k * BK + tl.arange(0, BK)[:, None]) * \
|
||||
DV + (i_v * BV + tl.arange(0, BV)[None, :])
|
||||
h += tl.load(p_init_s, mask=mask_kv, other=0).to(tl.float32)
|
||||
|
||||
for i in range(0, T):
|
||||
_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
||||
_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
||||
_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
||||
|
||||
h += _k[:, None] * _v[None, :]
|
||||
_d_q = h * _do[None, :]
|
||||
d_q = tl.sum(_d_q, axis=1) * scale
|
||||
tl.store(p_dq, d_q.to(p_dq.dtype.element_ty), mask=mask_bk)
|
||||
|
||||
p_k += DK
|
||||
p_do += DV
|
||||
p_v += DV
|
||||
p_dq += DK
|
||||
|
||||
# sync threads
|
||||
tl.debug_barrier()
|
||||
|
||||
p_q = q + i_bh * s_qk_h + i_k * BK + tl.arange(0, BK) + (T - 1) * DK
|
||||
p_k = k + i_bh * s_qk_h + i_k * BK + tl.arange(0, BK) + (T - 1) * DK
|
||||
p_do = do + i_bh * s_vo_h + i_v * BV + tl.arange(0, BV) + (T - 1) * DV
|
||||
p_v = v + i_bh * s_vo_h + i_v * BV + tl.arange(0, BV) + (T - 1) * DV
|
||||
p_dk = dk + (i_bh + i_v * B * H) * s_qk_h + i_k * \
|
||||
BK + tl.arange(0, BK) + (T - 1) * DK
|
||||
p_dv = dv + (i_bh + i_k * B * H) * s_vo_h + i_v * \
|
||||
BV + tl.arange(0, BV) + (T - 1) * DV
|
||||
d_h = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
|
||||
for _ in range(T):
|
||||
_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
||||
_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
||||
_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
||||
_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
||||
d_h += _q[:, None] * _do[None, :]
|
||||
d_k = tl.sum(d_h * _v[None, :], axis=1)
|
||||
d_v = tl.sum(d_h * _k[:, None], axis=0)
|
||||
|
||||
tl.store(p_dk, d_k.to(p_dk.dtype.element_ty), mask=mask_bk)
|
||||
tl.store(p_dv, d_v.to(p_dv.dtype.element_ty), mask=mask_bv)
|
||||
|
||||
p_do -= DV
|
||||
p_q -= DK
|
||||
p_k -= DK
|
||||
p_v -= DV
|
||||
p_dk -= DK
|
||||
p_dv -= DV
|
||||
|
||||
|
||||
class FusedRecurrentLinearAttentionFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@contiguous
|
||||
def forward(ctx, q, k, v, initial_state=None, output_final_state=False):
|
||||
batch_size, n_heads, seq_len, d_head_qk = q.shape
|
||||
d_head_v = v.shape[-1]
|
||||
|
||||
scale = d_head_qk ** -0.5
|
||||
BK, BV = min(d_head_qk, 32), min(d_head_v, 32)
|
||||
NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV)
|
||||
num_stages = 1
|
||||
num_warps = 1
|
||||
|
||||
o = q.new_empty(NK, batch_size, n_heads, seq_len, d_head_v)
|
||||
|
||||
if output_final_state:
|
||||
final_state = q.new_empty(batch_size, n_heads, d_head_qk, d_head_v)
|
||||
else:
|
||||
final_state = None
|
||||
|
||||
grid = (NV, NK, batch_size * n_heads)
|
||||
fused_recurrent_linear_attn_fwd_kernel[grid](
|
||||
q, k, v, o, initial_state, final_state,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
batch_size, n_heads, seq_len, scale,
|
||||
DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages,
|
||||
USE_INITIAL_STATE=initial_state is not None,
|
||||
STORE_FINAL_STATE=final_state is not None
|
||||
)
|
||||
|
||||
o = o.sum(0)
|
||||
ctx.save_for_backward(q, k, v, initial_state)
|
||||
return o, final_state
|
||||
|
||||
@staticmethod
|
||||
@contiguous
|
||||
def backward(ctx, do, d_final_state=None):
|
||||
q, k, v, initial_state = ctx.saved_tensors
|
||||
batch_size, n_heads, seq_len, d_head_qk = q.shape
|
||||
d_head_v = v.shape[-1]
|
||||
scale = d_head_qk ** -0.5
|
||||
|
||||
BK, BV = min(d_head_qk, 32), min(d_head_v, 32)
|
||||
NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV)
|
||||
num_stages = 1
|
||||
num_warps = 1
|
||||
|
||||
dq = q.new_empty(NV, batch_size, n_heads, seq_len, d_head_qk)
|
||||
dk = q.new_empty(NV, batch_size, n_heads, seq_len, d_head_qk)
|
||||
dv = q.new_empty(NK, batch_size, n_heads, seq_len, d_head_v)
|
||||
grid = (NV, NK, batch_size * n_heads)
|
||||
|
||||
fused_recurrent_linear_attn_bwd_kernel[grid](
|
||||
q, k, v, do, dq, dk, dv, initial_state,
|
||||
q.stride(1), q.stride(2), q.stride(3),
|
||||
v.stride(1), v.stride(2), v.stride(3),
|
||||
batch_size, n_heads, seq_len, scale,
|
||||
DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages,
|
||||
USE_INITIAL_STATE=initial_state is not None
|
||||
)
|
||||
dq = dq.sum(0)
|
||||
dk = dk.sum(0)
|
||||
dv = dv.sum(0)
|
||||
return dq, dk, dv, None, None
|
||||
|
||||
|
||||
def fused_recurrent_linear_attn(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
initial_state: torch.Tensor = None,
|
||||
output_final_state: bool = False,
|
||||
normalize: bool = False
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if initial_state is not None:
|
||||
initial_state = initial_state.detach()
|
||||
o, final_state = FusedRecurrentLinearAttentionFunction.apply(
|
||||
q, k, v, initial_state, output_final_state)
|
||||
if normalize:
|
||||
o = normalize_output(q, k, o)
|
||||
return o, final_state
|
||||
Reference in New Issue
Block a user