This commit is contained in:
11
finetune/lora/v6/fla/ops/abc/__init__.py
vendored
Normal file
11
finetune/lora/v6/fla/ops/abc/__init__.py
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from .chunk import chunk_abc
|
||||
from .chunk_gate import chunk_gated_abc
|
||||
from .recurrent_fuse import fused_recurrent_gated_abc
|
||||
|
||||
__all__ = [
|
||||
'chunk_abc',
|
||||
'chunk_gated_abc',
|
||||
'fused_recurrent_gated_abc'
|
||||
]
|
||||
1194
finetune/lora/v6/fla/ops/abc/chunk.py
vendored
Normal file
1194
finetune/lora/v6/fla/ops/abc/chunk.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1287
finetune/lora/v6/fla/ops/abc/chunk_gate.py
vendored
Normal file
1287
finetune/lora/v6/fla/ops/abc/chunk_gate.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
90
finetune/lora/v6/fla/ops/abc/naive.py
vendored
Normal file
90
finetune/lora/v6/fla/ops/abc/naive.py
vendored
Normal file
@@ -0,0 +1,90 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def naive_recurrent_abc(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
s: torch.Tensor,
|
||||
g: Optional[torch.Tensor] = None,
|
||||
scale: Optional[int] = None,
|
||||
initial_state: Optional[torch.Tensor] = None,
|
||||
output_final_state: Optional[bool] = False
|
||||
) -> torch.Tensor:
|
||||
dtype = q.dtype
|
||||
|
||||
# [batch_size, n_heads, seq_len, n_slots]
|
||||
if g is None:
|
||||
z = s.float().logcumsumexp(2)
|
||||
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
||||
s = torch.exp(s - z)
|
||||
q, k, v, s, g = map(lambda x: x.float(), (q, k, v, s, g))
|
||||
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
||||
|
||||
hk = torch.zeros(B, H, K, M, dtype=torch.float, device=q.device)
|
||||
ok = torch.zeros_like(s)
|
||||
|
||||
if scale is None:
|
||||
scale = q.shape[-1] ** -0.5
|
||||
|
||||
final_state = None
|
||||
if initial_state is not None:
|
||||
hk += initial_state[0]
|
||||
|
||||
for i in range(T):
|
||||
q_i = q[:, :, i] * scale
|
||||
k_i = k[:, :, i]
|
||||
v_i = s[:, :, i]
|
||||
g_i = g[:, :, i].exp()
|
||||
hk = hk * g_i[..., None, :] + k_i[..., None] * v_i[..., None, :]
|
||||
ok[:, :, i] = (q_i[..., None] * hk).sum(-2)
|
||||
|
||||
qv = ok.softmax(-1)
|
||||
hv = torch.zeros(B, H, M, V, dtype=torch.float, device=q.device)
|
||||
ov = torch.zeros_like(v)
|
||||
if initial_state is not None:
|
||||
hv += initial_state[1]
|
||||
|
||||
for i in range(T):
|
||||
q_i = qv[:, :, i]
|
||||
k_i = s[:, :, i]
|
||||
v_i = v[:, :, i]
|
||||
g_i = g[:, :, i].exp()
|
||||
hv = hv * g_i[..., :, None] + k_i[..., None] * v_i[..., None, :]
|
||||
ov[:, :, i] = (q_i[..., None] * hv).sum(-2)
|
||||
|
||||
if output_final_state:
|
||||
final_state = (hk, hv)
|
||||
return ov.to(dtype), final_state
|
||||
|
||||
|
||||
def naive_cumsum_abc(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
s: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
A simple implementation of vanilla ABC that is more aligned with the descriptions in the paper.
|
||||
This is just for demonstration purposes, with no numerical stabilities guaranteed.
|
||||
"""
|
||||
|
||||
dtype = q.dtype
|
||||
q, k, v, s = map(lambda x: x.float(), (q, k, v, s))
|
||||
|
||||
scale = q.shape[-1] ** -0.5
|
||||
# [batch_size, n_heads, seq_len, n_slots]
|
||||
s = (s - s.max(2, True)[0]).exp()
|
||||
z = s.cumsum(2)
|
||||
# [batch_size, n_heads, seq_len, n_slots, d_head]
|
||||
K = (s.unsqueeze(-1) * k.unsqueeze(-2)).cumsum(2) / z.unsqueeze(-1)
|
||||
V = (s.unsqueeze(-1) * v.unsqueeze(-2)).cumsum(2) / z.unsqueeze(-1)
|
||||
# [batch_size, n_heads, seq_len, n_slots]
|
||||
p = torch.einsum('...d,...md->...m', q * scale, K).softmax(-1)
|
||||
# [batch_size, n_heads, seq_len, d_head]
|
||||
o = torch.einsum('...m,...md->...d', p, V)
|
||||
return o.to(dtype), None
|
||||
388
finetune/lora/v6/fla/ops/abc/recurrent_fuse.py
vendored
Normal file
388
finetune/lora/v6/fla/ops/abc/recurrent_fuse.py
vendored
Normal file
@@ -0,0 +1,388 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright (c) 2024, Yu Zhang, Songlin Yang
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
from fla.utils import contiguous
|
||||
|
||||
|
||||
@triton.jit
|
||||
def fused_recurrent_gated_abc_fwd_kernel(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
gk,
|
||||
gv,
|
||||
o,
|
||||
h0,
|
||||
ht,
|
||||
s_k_h,
|
||||
s_v_h,
|
||||
scale,
|
||||
B: tl.constexpr,
|
||||
H: tl.constexpr,
|
||||
T: tl.constexpr,
|
||||
K: tl.constexpr,
|
||||
V: tl.constexpr,
|
||||
BK: tl.constexpr,
|
||||
BV: tl.constexpr,
|
||||
USE_INITIAL_STATE: tl.constexpr,
|
||||
STORE_FINAL_STATE: tl.constexpr,
|
||||
REVERSE: tl.constexpr,
|
||||
USE_GK: tl.constexpr,
|
||||
USE_GV: tl.constexpr,
|
||||
):
|
||||
# indices
|
||||
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
||||
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
||||
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
||||
p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
||||
|
||||
if USE_GK:
|
||||
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
||||
if USE_GV:
|
||||
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
||||
|
||||
mask_bk = (i_k * BK + tl.arange(0, BK)) < K
|
||||
mask_bv = (i_v * BV + tl.arange(0, BV)) < V
|
||||
|
||||
h = tl.zeros([BV, BK], dtype=tl.float32)
|
||||
mask_kv = mask_bk[None, :] & mask_bv[:, None]
|
||||
|
||||
if USE_INITIAL_STATE:
|
||||
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
||||
h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
|
||||
|
||||
for _ in range(0, T):
|
||||
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
||||
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
||||
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
||||
if USE_GK:
|
||||
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
|
||||
h = h * b_gk[None, :]
|
||||
if USE_GV:
|
||||
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
|
||||
h = h * b_gv[:, None]
|
||||
h += b_k[None, :] * b_v[:, None]
|
||||
b_o = h * b_q[None, :]
|
||||
b_o = tl.sum(b_o, axis=1)
|
||||
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv)
|
||||
p_q += -K if REVERSE else K
|
||||
p_k += -K if REVERSE else K
|
||||
p_o += -V if REVERSE else V
|
||||
p_v += -V if REVERSE else V
|
||||
if USE_GK:
|
||||
p_gk += -K if REVERSE else K
|
||||
if USE_GV:
|
||||
p_gv += -V if REVERSE else V
|
||||
|
||||
if STORE_FINAL_STATE:
|
||||
p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
||||
tl.store(p_ht, h.to(p_ht.dtype.element_ty), mask=mask_kv)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def fused_recurrent_gated_abc_bwd_kernel(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
gk,
|
||||
gv,
|
||||
do,
|
||||
dq,
|
||||
dk,
|
||||
dv,
|
||||
h0,
|
||||
s_k_h,
|
||||
s_v_h,
|
||||
scale,
|
||||
B: tl.constexpr,
|
||||
H: tl.constexpr,
|
||||
T: tl.constexpr,
|
||||
K: tl.constexpr,
|
||||
V: tl.constexpr,
|
||||
BK: tl.constexpr,
|
||||
BV: tl.constexpr,
|
||||
USE_INITIAL_STATE: tl.constexpr,
|
||||
REVERSE: tl.constexpr,
|
||||
USE_GK: tl.constexpr,
|
||||
USE_GV: tl.constexpr,
|
||||
):
|
||||
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
||||
|
||||
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
||||
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
||||
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
||||
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
||||
p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
||||
if USE_GK:
|
||||
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
||||
if USE_GV:
|
||||
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
||||
mask_bk = i_k * BK + tl.arange(0, BK) < K
|
||||
mask_bv = i_v * BV + tl.arange(0, BV) < V
|
||||
mask_kv = mask_bk[:, None] & mask_bv[None, :]
|
||||
h = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
|
||||
if USE_INITIAL_STATE:
|
||||
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
||||
h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
|
||||
|
||||
for _ in range(0, T):
|
||||
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
||||
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
||||
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
||||
if USE_GK:
|
||||
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
|
||||
h = h * b_gk[:, None]
|
||||
if USE_GV:
|
||||
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
|
||||
h = h * b_gv[None, :]
|
||||
h += b_k[:, None] * b_v[None, :]
|
||||
b_dq = tl.sum(h * b_do[None, :], axis=1) * scale
|
||||
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_bk)
|
||||
|
||||
p_k += -K if REVERSE else K
|
||||
p_v += -V if REVERSE else V
|
||||
p_q += -K if REVERSE else K
|
||||
p_do += -V if REVERSE else V
|
||||
p_dq += -K if REVERSE else K
|
||||
if USE_GK:
|
||||
p_gk += -K if REVERSE else K
|
||||
if USE_GV:
|
||||
p_gv += -V if REVERSE else V
|
||||
|
||||
# sync threads
|
||||
tl.debug_barrier()
|
||||
|
||||
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
||||
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
||||
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
||||
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
||||
p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
||||
p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
||||
if USE_GK:
|
||||
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
||||
if USE_GV:
|
||||
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
||||
|
||||
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
||||
for _ in range(T):
|
||||
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
||||
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
||||
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
||||
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
||||
b_dh += b_q[:, None] * b_do[None, :]
|
||||
b_dk = tl.sum(b_dh * b_v[None, :], axis=1)
|
||||
b_dv = tl.sum(b_dh * b_k[:, None], axis=0)
|
||||
if USE_GK:
|
||||
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
|
||||
b_dh *= b_gk[:, None]
|
||||
if USE_GV:
|
||||
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
|
||||
b_dh *= b_gv[None, :]
|
||||
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_bk)
|
||||
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_bv)
|
||||
|
||||
p_q += K if REVERSE else -K
|
||||
p_k += K if REVERSE else -K
|
||||
p_v += V if REVERSE else -V
|
||||
p_do += V if REVERSE else -V
|
||||
p_dk += K if REVERSE else -K
|
||||
p_dv += V if REVERSE else -V
|
||||
if USE_GK:
|
||||
p_gk += K if REVERSE else -K
|
||||
if USE_GV:
|
||||
p_gv += V if REVERSE else -V
|
||||
|
||||
|
||||
class FusedRecurrentGatedABCFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@contiguous
|
||||
@custom_fwd
|
||||
def forward(ctx, q, k, v, s, g, scale=None, initial_state=None, output_final_state=False, reverse=False):
|
||||
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
||||
# default scale
|
||||
if scale is None:
|
||||
scale = K ** -0.5
|
||||
|
||||
BK, BV, BM = min(K, 32), min(V, 32), min(M, 32)
|
||||
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
|
||||
num_stages = 1
|
||||
num_warps = 1
|
||||
|
||||
g = g.float().exp()
|
||||
|
||||
final_state = (None, None)
|
||||
if output_final_state:
|
||||
final_state = (q.new_empty(B, H, K, M), q.new_empty(B, H, M, V))
|
||||
|
||||
ok = q.new_empty(NK, B, H, T, M, dtype=torch.float)
|
||||
gk, gv = None, g
|
||||
grid = (NM, NK, B * H)
|
||||
fused_recurrent_gated_abc_fwd_kernel[grid](
|
||||
q, k, s, gk, gv, ok, initial_state[0], final_state[0],
|
||||
k.stride(1),
|
||||
s.stride(1),
|
||||
scale=scale,
|
||||
B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM,
|
||||
USE_INITIAL_STATE=initial_state[0] is not None,
|
||||
STORE_FINAL_STATE=final_state[0] is not None,
|
||||
USE_GK=False,
|
||||
USE_GV=True,
|
||||
REVERSE=reverse,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
ok = ok.sum(0)
|
||||
|
||||
qv = ok.softmax(-1, dtype=torch.float)
|
||||
ov = q.new_empty(NM, B, H, T, V, dtype=torch.float)
|
||||
gk, gv = g, None
|
||||
grid = (NV, NM, B * H)
|
||||
fused_recurrent_gated_abc_fwd_kernel[grid](
|
||||
qv, s, v, gk, gv, ov, initial_state[1], final_state[1],
|
||||
s.stride(1),
|
||||
v.stride(1),
|
||||
scale=1.,
|
||||
B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV,
|
||||
USE_INITIAL_STATE=initial_state[0] is not None,
|
||||
STORE_FINAL_STATE=final_state[0] is not None,
|
||||
USE_GK=True,
|
||||
USE_GV=False,
|
||||
REVERSE=reverse,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages
|
||||
)
|
||||
ov = ov.sum(0)
|
||||
|
||||
ctx.save_for_backward(q, k, v, s, g, qv, *initial_state, ok)
|
||||
ctx.scale = scale
|
||||
ctx.reverse = reverse
|
||||
# we do not need the gradient of the final state from the next chunk
|
||||
# similiar to Trunctated BPTT
|
||||
if final_state is not None:
|
||||
final_state = tuple(i.detach() for i in final_state)
|
||||
return ov.to(q.dtype), final_state
|
||||
|
||||
@staticmethod
|
||||
@contiguous
|
||||
@custom_bwd
|
||||
def backward(ctx, do, dht=None):
|
||||
q, k, v, s, g, qv, *initial_state, ok = ctx.saved_tensors
|
||||
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
||||
V = v.shape[-1]
|
||||
scale = ctx.scale
|
||||
|
||||
BK, BV, BM = min(K, 32), min(V, 32), min(M, 32)
|
||||
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
|
||||
num_stages = 1
|
||||
num_warps = 1
|
||||
|
||||
dqv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
|
||||
dsv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
|
||||
dv = q.new_empty(NM, B, H, T, V, dtype=torch.float)
|
||||
gk, gv = g, None
|
||||
grid = (NV, NM, B * H)
|
||||
fused_recurrent_gated_abc_bwd_kernel[grid](
|
||||
qv, s, v, gk, gv, do, dqv, dsv, dv, initial_state[1],
|
||||
s.stride(1),
|
||||
v.stride(1),
|
||||
scale=1.,
|
||||
B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages,
|
||||
USE_INITIAL_STATE=initial_state[1] is not None,
|
||||
REVERSE=ctx.reverse,
|
||||
USE_GK=gk is not None,
|
||||
USE_GV=gv is not None
|
||||
)
|
||||
dqv = dqv.sum(0)
|
||||
dsv = dsv.sum(0)
|
||||
dv = dv.sum(0)
|
||||
dgk = dqv * qv.float() - dsv * s.float()
|
||||
dgk_cumsum = dgk.cumsum(-2)
|
||||
dgk = dgk + dgk_cumsum[:, :, -1, None] - dgk_cumsum
|
||||
|
||||
dok = qv * (dqv - (qv * dqv).sum(-1, True))
|
||||
dq = q.new_empty(NM, B, H, T, K, dtype=torch.float)
|
||||
dk = q.new_empty(NM, B, H, T, K, dtype=torch.float)
|
||||
dsk = q.new_empty(NK, B, H, T, M, dtype=torch.float)
|
||||
gk, gv = None, g
|
||||
grid = (NM, NK, B * H)
|
||||
fused_recurrent_gated_abc_bwd_kernel[grid](
|
||||
q, k, s, gk, gv, dok, dq, dk, dsk, initial_state[0],
|
||||
q.stride(1),
|
||||
s.stride(1),
|
||||
scale=scale,
|
||||
B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM,
|
||||
num_warps=num_warps,
|
||||
num_stages=num_stages,
|
||||
USE_INITIAL_STATE=initial_state[0] is not None,
|
||||
REVERSE=ctx.reverse,
|
||||
USE_GK=gk is not None,
|
||||
USE_GV=gv is not None
|
||||
)
|
||||
dq = dq.sum(0)
|
||||
dk = dk.sum(0)
|
||||
dsk = dsk.sum(0)
|
||||
|
||||
dgv = dok.float() * ok.float() - dsk * s.float()
|
||||
dgv_cumsum = dgv.cumsum(-2)
|
||||
dgv = dgv + dgv_cumsum[:, :, -1, None] - dgv_cumsum
|
||||
|
||||
ds = dsk.add_(dsv)
|
||||
dg = dgk.add_(dgv)
|
||||
|
||||
return dq.to(q), dk.to(k), dv.to(v), ds.to(s), dg.to(g), None, None, None, None
|
||||
|
||||
|
||||
def fused_recurrent_gated_abc(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
s: torch.Tensor,
|
||||
g: Optional[torch.Tensor] = None,
|
||||
scale: Optional[int] = None,
|
||||
initial_state: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_final_state: Optional[bool] = False
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
r"""
|
||||
Args:
|
||||
q (torch.Tensor):
|
||||
queries of shape `(B, H, T, K)`
|
||||
k (torch.Tensor):
|
||||
keys of shape `(B, H, T, K)`
|
||||
v (torch.Tensor):
|
||||
values of shape `(B, H, T, V)`
|
||||
g (torch.Tensor):
|
||||
Forget gates of shape `(B, H, T, M)` applied to keys.
|
||||
If not provided, this function is equivalent to vanilla ABC.
|
||||
scale (Optional[int]):
|
||||
Scale factor for attention scores.
|
||||
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
||||
initial_state (Optional[Tuple[torch.Tensor]]):
|
||||
Initial state tuple having tensors of shape `(B, H, K, V)`. Default: `None`.
|
||||
output_final_state (Optional[bool]):
|
||||
Whether to output the final state tuple, having tensors of shape `(B, H, K, V)`. Default: `False`.
|
||||
"""
|
||||
if initial_state is not None:
|
||||
initial_state = tuple(i.detach() for i in initial_state)
|
||||
if g is None:
|
||||
# TODO: this 3 steps took huge amount of time, ought to be optimized
|
||||
z = s.float().logcumsumexp(2)
|
||||
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
||||
s = torch.exp(s - z).to(k.dtype)
|
||||
if scale is None:
|
||||
scale = q.shape[-1] ** -0.5
|
||||
ov, final_state = FusedRecurrentGatedABCFunction.apply(q, k, v, s, g, scale, initial_state, output_final_state)
|
||||
return ov, final_state
|
||||
Reference in New Issue
Block a user