This commit is contained in:
14
finetune/lora/v6/fla/models/mamba/__init__.py
vendored
Normal file
14
finetune/lora/v6/fla/models/mamba/__init__.py
vendored
Normal file
@@ -0,0 +1,14 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.mamba.configuration_mamba import MambaConfig
|
||||
from fla.models.mamba.modeling_mamba import (MambaBlock, MambaForCausalLM,
|
||||
MambaModel)
|
||||
|
||||
AutoConfig.register(MambaConfig.model_type, MambaConfig, True)
|
||||
AutoModel.register(MambaConfig, MambaModel, True)
|
||||
AutoModelForCausalLM.register(MambaConfig, MambaForCausalLM, True)
|
||||
|
||||
|
||||
__all__ = ['MambaConfig', 'MambaForCausalLM', 'MambaModel', 'MambaBlock']
|
||||
156
finetune/lora/v6/fla/models/mamba/configuration_mamba.py
vendored
Normal file
156
finetune/lora/v6/fla/models/mamba/configuration_mamba.py
vendored
Normal file
@@ -0,0 +1,156 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""MAMBA configuration"""
|
||||
|
||||
import math
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class MambaConfig(PretrainedConfig):
|
||||
"""
|
||||
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the MAMBA
|
||||
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 50280):
|
||||
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`MambaModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the embeddings and hidden states.
|
||||
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the model.
|
||||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon to use in the layer normalization layers.
|
||||
pad_token_id (`int`, *optional*, defaults to 0):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 0):
|
||||
The id of the beginning of sentence token in the vocabulary.
|
||||
eos_token_id (`int`, *optional*, defaults to 0):
|
||||
The id of the end of sentence token in the vocabulary.
|
||||
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
|
||||
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
|
||||
use_bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
|
||||
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to use bias in the convolution layer of the mixer block.
|
||||
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
initializer_range (`float`, *optional*, defaults to 0.1):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not residuals should be in `float32`.
|
||||
If set to `False` residuals will keep the same `dtype` as the rest of the model
|
||||
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
||||
Rank of the the discretization projection matrix.
|
||||
`"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
||||
time_step_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale used used to scale `dt_proj.bias`.
|
||||
time_step_min (`float`, *optional*, defaults to 0.001):
|
||||
Minimum `time_step` used to bound `dt_proj.bias`.
|
||||
time_step_max (`float`, *optional*, defaults to 0.1):
|
||||
Maximum `time_step` used to bound `dt_proj.bias`.
|
||||
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
|
||||
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
|
||||
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
||||
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
||||
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to rescale `out_proj` weights when initializing.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the cache should be used.
|
||||
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import MambaConfig, MambaModel
|
||||
|
||||
>>> # Initializing a Mamba configuration
|
||||
>>> configuration = MambaConfig()
|
||||
|
||||
>>> # Initializing a model (with random weights) from the configuration
|
||||
>>> model = MambaModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "mamba"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=2048,
|
||||
state_size=16,
|
||||
num_hidden_layers=48,
|
||||
layer_norm_epsilon=1e-5,
|
||||
pad_token_id= 0,
|
||||
bos_token_id= 1,
|
||||
eos_token_id= 2,
|
||||
expand=2,
|
||||
conv_kernel=4,
|
||||
use_bias=False,
|
||||
use_conv_bias=True,
|
||||
hidden_act="silu",
|
||||
initializer_range=0.1,
|
||||
residual_in_fp32=False,
|
||||
time_step_rank="auto",
|
||||
time_step_scale=1.0,
|
||||
time_step_min=0.001,
|
||||
time_step_max=0.1,
|
||||
time_step_init_scheme="random",
|
||||
time_step_floor=1e-4,
|
||||
rescale_prenorm_residual=False,
|
||||
use_cache=True,
|
||||
fuse_norm: bool = True,
|
||||
fuse_cross_entropy: bool = True,
|
||||
tie_word_embeddings: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.state_size = state_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.conv_kernel = conv_kernel
|
||||
self.expand = expand
|
||||
self.intermediate_size = int(expand * self.hidden_size)
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
self.pad_token_id = pad_token_id
|
||||
self.use_bias = use_bias
|
||||
self.use_conv_bias = use_conv_bias
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
|
||||
self.time_step_scale = time_step_scale
|
||||
self.time_step_min = time_step_min
|
||||
self.time_step_max = time_step_max
|
||||
self.time_step_init_scheme = time_step_init_scheme
|
||||
self.time_step_floor = time_step_floor
|
||||
self.rescale_prenorm_residual = rescale_prenorm_residual
|
||||
self.residual_in_fp32 = residual_in_fp32
|
||||
self.use_cache = use_cache
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
self.fuse_norm = fuse_norm
|
||||
|
||||
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|
||||
605
finetune/lora/v6/fla/models/mamba/modeling_mamba.py
vendored
Normal file
605
finetune/lora/v6/fla/models/mamba/modeling_mamba.py
vendored
Normal file
@@ -0,0 +1,605 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PyTorch MAMBA model."""
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import ModelOutput, logging
|
||||
|
||||
from fla.models.mamba.configuration_mamba import MambaConfig
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
try:
|
||||
from mamba_ssm.ops.selective_scan_interface import (mamba_inner_fn,
|
||||
selective_scan_fn)
|
||||
from mamba_ssm.ops.triton.selective_state_update import \
|
||||
selective_state_update
|
||||
except ImportError:
|
||||
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
||||
|
||||
try:
|
||||
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
||||
except ImportError:
|
||||
causal_conv1d_update, causal_conv1d_fn = None, None
|
||||
|
||||
is_fast_path_available = all(
|
||||
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
|
||||
)
|
||||
|
||||
|
||||
class MambaCache:
|
||||
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
|
||||
self.seqlen_offset = 0
|
||||
self.dtype = dtype
|
||||
intermediate_size = config.intermediate_size
|
||||
ssm_state_size = config.state_size
|
||||
conv_kernel_size = config.conv_kernel
|
||||
|
||||
self.conv_states = {
|
||||
i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.ssm_states = {
|
||||
i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
|
||||
|
||||
class MambaMixer(nn.Module):
|
||||
"""
|
||||
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
||||
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
||||
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
||||
and is why Mamba is called **selective** state spaces)
|
||||
"""
|
||||
|
||||
def __init__(self, config, layer_idx):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.ssm_state_size = config.state_size
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.time_step_rank = config.time_step_rank
|
||||
self.layer_idx = layer_idx
|
||||
self.use_conv_bias = config.use_conv_bias
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.intermediate_size,
|
||||
out_channels=self.intermediate_size,
|
||||
bias=config.use_conv_bias,
|
||||
kernel_size=config.conv_kernel,
|
||||
groups=self.intermediate_size,
|
||||
padding=config.conv_kernel - 1,
|
||||
)
|
||||
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
|
||||
# projection of the input hidden states
|
||||
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
|
||||
# selective projection used to make dt, B and C input dependant
|
||||
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
||||
# time step projection (discretization)
|
||||
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
||||
|
||||
# S4D real initialization. These are not discretized!
|
||||
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
||||
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
|
||||
A = A.expand(self.intermediate_size, -1).contiguous()
|
||||
|
||||
self.A_log = nn.Parameter(torch.log(A))
|
||||
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
self.use_bias = config.use_bias
|
||||
|
||||
if not is_fast_path_available:
|
||||
logger.warning_once(
|
||||
"The fast path is not available because on of "
|
||||
"`(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
|
||||
" is None. Falling back to the naive implementation. "
|
||||
"To install follow https://github.com/state-spaces/mamba/#installation and"
|
||||
" https://github.com/Dao-AILab/causal-conv1d"
|
||||
)
|
||||
|
||||
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: Optional[MambaCache] = None):
|
||||
# 1. Gated MLP's linear projection
|
||||
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
||||
|
||||
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
|
||||
contextualized_states = mamba_inner_fn(
|
||||
projected_states,
|
||||
self.conv1d.weight,
|
||||
self.conv1d.bias if self.use_conv_bias else None,
|
||||
self.x_proj.weight,
|
||||
self.dt_proj.weight,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias.float() if self.use_bias else None,
|
||||
-torch.exp(self.A_log.float()),
|
||||
None, # input-dependent B
|
||||
None, # input-dependent C
|
||||
self.D.float(),
|
||||
delta_bias=self.dt_proj.bias.float(),
|
||||
delta_softplus=True,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states, gate = projected_states.chunk(2, dim=1)
|
||||
|
||||
# 2. Convolution sequence transformation
|
||||
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
hidden_states = causal_conv1d_update(
|
||||
hidden_states.squeeze(-1),
|
||||
cache_params.conv_states[self.layer_idx],
|
||||
conv_weights,
|
||||
self.conv1d.bias,
|
||||
self.activation,
|
||||
)
|
||||
hidden_states = hidden_states.unsqueeze(-1)
|
||||
else:
|
||||
if cache_params is not None:
|
||||
conv_states = nn.functional.pad(
|
||||
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_states)
|
||||
hidden_states = causal_conv1d_fn(
|
||||
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
|
||||
)
|
||||
|
||||
# 3. State Space Model sequence transformation
|
||||
# 3.a. input varying initialization of time_step, B and C
|
||||
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
||||
time_step, B, C = torch.split(
|
||||
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
||||
)
|
||||
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
|
||||
|
||||
A = -torch.exp(self.A_log.float())
|
||||
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
||||
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
scan_outputs = selective_state_update(
|
||||
cache_params.ssm_states[self.layer_idx],
|
||||
hidden_states[..., 0],
|
||||
discrete_time_step[..., 0],
|
||||
A,
|
||||
B[:, 0],
|
||||
C[:, 0],
|
||||
self.D,
|
||||
gate[..., 0],
|
||||
time_proj_bias,
|
||||
dt_softplus=True,
|
||||
).unsqueeze(-1)
|
||||
else:
|
||||
scan_outputs, ssm_state = selective_scan_fn(
|
||||
hidden_states,
|
||||
discrete_time_step,
|
||||
A,
|
||||
B.transpose(1, 2),
|
||||
C.transpose(1, 2),
|
||||
self.D.float(),
|
||||
gate,
|
||||
time_proj_bias,
|
||||
delta_softplus=True,
|
||||
return_last_state=True,
|
||||
)
|
||||
if ssm_state is not None and cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
|
||||
# 4. Final linear projection
|
||||
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
||||
return contextualized_states
|
||||
|
||||
# fmt: off
|
||||
def slow_forward(self, input_states, cache_params: Optional[MambaCache] = None):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
dtype = input_states.dtype
|
||||
# 1. Gated MLP's linear projection
|
||||
# [batch, 2 * intermediate_size, seq_len]
|
||||
projected_states = self.in_proj(input_states).transpose(1, 2)
|
||||
hidden_states, gate = projected_states.chunk(2, dim=1)
|
||||
|
||||
# 2. Convolution sequence transformation
|
||||
if cache_params is not None:
|
||||
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
||||
if cache_params.seqlen_offset > 0:
|
||||
# [batch, intermediate_size, conv_kernel_size]
|
||||
conv_state = cache_params.conv_states[self.layer_idx]
|
||||
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
||||
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
if self.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
# [batch, intermediate_size, 1] : decoding
|
||||
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)
|
||||
else:
|
||||
conv_state = nn.functional.pad(
|
||||
hidden_states,
|
||||
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
# [batch, intermediate_size, seq_len]
|
||||
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
|
||||
else:
|
||||
ssm_state = torch.zeros(
|
||||
(batch_size, self.intermediate_size, self.ssm_state_size),
|
||||
device=hidden_states.device, dtype=dtype
|
||||
)
|
||||
# [batch, intermediate_size, seq_len]
|
||||
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
|
||||
|
||||
# 3. State Space Model sequence transformation
|
||||
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
|
||||
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
||||
time_step, B, C = torch.split(
|
||||
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
||||
)
|
||||
# [batch, seq_len, intermediate_size]
|
||||
discrete_time_step = self.dt_proj(time_step)
|
||||
# [batch, intermediate_size, seq_len]
|
||||
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2)
|
||||
|
||||
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
|
||||
# [intermediate_size, ssm_state_size]
|
||||
A = -torch.exp(self.A_log.float())
|
||||
# [batch, intermediate_size, seq_len, ssm_state_size]
|
||||
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None])
|
||||
# [batch, intermediade_size, seq_len, ssm_state_size]
|
||||
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float()
|
||||
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
|
||||
|
||||
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
||||
scan_outputs = []
|
||||
for i in range(seq_len):
|
||||
# [batch, intermediade_size, ssm_state]
|
||||
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]
|
||||
# [batch, intermediade_size, 1]
|
||||
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1))
|
||||
scan_outputs.append(scan_output[:, :, 0])
|
||||
# [batch, seq_len, intermediade_size]
|
||||
scan_output = torch.stack(scan_outputs, dim=-1)
|
||||
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
||||
scan_output = (scan_output * self.act(gate))
|
||||
|
||||
if cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
|
||||
# 4. Final linear projection
|
||||
# [batch, seq_len, hidden_size]
|
||||
contextualized_states = self.out_proj(scan_output.transpose(1, 2))
|
||||
return contextualized_states
|
||||
# fmt: on
|
||||
|
||||
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
|
||||
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type:
|
||||
return self.cuda_kernels_forward(hidden_states, cache_params)
|
||||
return self.slow_forward(hidden_states, cache_params)
|
||||
|
||||
|
||||
class MambaBlock(nn.Module):
|
||||
def __init__(self, config, layer_idx):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_idx = layer_idx
|
||||
self.residual_in_fp32 = config.residual_in_fp32
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mixer = MambaMixer(config, layer_idx=layer_idx)
|
||||
|
||||
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states)
|
||||
# if self.residual_in_fp32:
|
||||
# residual = residual.to(torch.float32)
|
||||
hidden_states = self.mixer(hidden_states, cache_params=cache_params)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MambaPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = MambaConfig
|
||||
base_model_prefix = "backbone"
|
||||
_no_split_modules = ["MambaBlock"]
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, MambaMixer):
|
||||
module.A_log._no_weight_decay = True
|
||||
module.D._no_weight_decay = True
|
||||
|
||||
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
|
||||
if self.config.time_step_init_scheme == "constant":
|
||||
nn.init.constant_(module.dt_proj.weight, dt_init_std)
|
||||
elif self.config.time_step_init_scheme == "random":
|
||||
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
|
||||
|
||||
dt = torch.exp(
|
||||
torch.rand(self.config.intermediate_size)
|
||||
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
||||
+ math.log(self.config.time_step_min)
|
||||
).clamp(min=self.config.time_step_floor)
|
||||
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
module.dt_proj.bias.copy_(inv_dt)
|
||||
module.dt_proj.bias._no_reinit = True
|
||||
|
||||
if isinstance(module, nn.Linear):
|
||||
if module.bias is not None:
|
||||
if not getattr(module.bias, "_no_reinit", False):
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
||||
|
||||
if self.config.rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["out_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(self.config.num_layers)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MambaOutput(ModelOutput):
|
||||
"""
|
||||
Class for the MAMBA model outputs.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
cache_params (`MambaCache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
|
||||
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
last_hidden_state: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[MambaCache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class MambaCausalLMOutput(ModelOutput):
|
||||
"""
|
||||
Base class for causal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
cache_params (`MambaCache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
|
||||
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[MambaCache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
class MambaModel(MambaPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.embeddings = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
cache_params: Optional[MambaCache] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
**kwargs, # `attention_mask` is passed by the tokenizer and we don't want it
|
||||
) -> Union[Tuple, MambaOutput]:
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
||||
raise ValueError(
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||||
)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
if self.gradient_checkpointing and self.training and use_cache:
|
||||
use_cache = False
|
||||
|
||||
if cache_params is None and use_cache:
|
||||
cache_params = MambaCache(
|
||||
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for mixer_block in self.layers:
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states = self._gradient_checkpointing_func(mixer_block.__call__, hidden_states, cache_params)
|
||||
else:
|
||||
hidden_states = mixer_block(hidden_states, cache_params=cache_params)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if use_cache:
|
||||
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
||||
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
||||
|
||||
return MambaOutput(
|
||||
last_hidden_state=hidden_states,
|
||||
cache_params=cache_params if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
class MambaForCausalLM(MambaPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.backbone = MambaModel(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.backbone.get_input_embeddings()
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
return self.backbone.set_input_embeddings(new_embeddings)
|
||||
|
||||
def _update_model_kwargs_for_generation(
|
||||
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], **kwargs
|
||||
) -> Dict[str, Any]:
|
||||
model_kwargs["cache_params"] = outputs.get("cache_params", None)
|
||||
return model_kwargs
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, cache_params: Optional[MambaCache] = None, inputs_embeds=None, attention_mask=None, **kwargs
|
||||
):
|
||||
# only last token for inputs_ids if the state is passed along.
|
||||
if cache_params is not None:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
if inputs_embeds is not None and cache_params is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs["cache_params"] = cache_params
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
cache_params: Optional[MambaCache] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
**kwargs, # for now we need this for generation
|
||||
) -> Union[Tuple, MambaCausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
mamba_outputs = self.backbone(
|
||||
input_ids,
|
||||
cache_params=cache_params,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
hidden_states = mamba_outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + mamba_outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return MambaCausalLMOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
cache_params=mamba_outputs.cache_params,
|
||||
hidden_states=mamba_outputs.hidden_states,
|
||||
)
|
||||
Reference in New Issue
Block a user