This commit is contained in:
josc146
2024-05-28 22:35:47 +08:00
parent 3488d22d22
commit f05a4acb04
138 changed files with 29047 additions and 334 deletions

29
finetune/lora/v6/fla/models/__init__.py vendored Normal file
View File

@@ -0,0 +1,29 @@
# -*- coding: utf-8 -*-
from fla.models.abc import ABCConfig, ABCForCausalLM, ABCModel
from fla.models.delta_net import (DeltaNetConfig, DeltaNetForCausalLM,
DeltaNetModel)
from fla.models.gla import GLAConfig, GLAForCausalLM, GLAModel
from fla.models.hgrn import HGRNConfig, HGRNForCausalLM, HGRNModel
from fla.models.hgrn2 import HGRN2Config, HGRN2ForCausalLM, HGRN2Model
from fla.models.linear_attn import (LinearAttentionConfig,
LinearAttentionForCausalLM,
LinearAttentionModel)
from fla.models.mamba import MambaConfig, MambaForCausalLM, MambaModel
from fla.models.retnet import RetNetConfig, RetNetForCausalLM, RetNetModel
from fla.models.rwkv6 import RWKV6Config, RWKV6ForCausalLM, RWKV6Model
from fla.models.transformer import (TransformerConfig, TransformerForCausalLM,
TransformerModel)
__all__ = [
'ABCConfig', 'ABCForCausalLM', 'ABCModel',
'DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel',
'GLAConfig', 'GLAForCausalLM', 'GLAModel',
'HGRNConfig', 'HGRNForCausalLM', 'HGRNModel',
'HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model',
'LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel',
'MambaConfig', 'MambaForCausalLM', 'MambaModel',
'RetNetConfig', 'RetNetForCausalLM', 'RetNetModel',
'RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model',
'TransformerConfig', 'TransformerForCausalLM', 'TransformerModel'
]

View File

@@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.abc.configuration_abc import ABCConfig
from fla.models.abc.modeling_abc import ABCForCausalLM, ABCModel
AutoConfig.register(ABCConfig.model_type, ABCConfig)
AutoModel.register(ABCConfig, ABCModel)
AutoModelForCausalLM.register(ABCConfig, ABCForCausalLM)
__all__ = ['ABCConfig', 'ABCForCausalLM', 'ABCModel']

View File

@@ -0,0 +1,74 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class ABCConfig(PretrainedConfig):
model_type = 'abc'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
gate_low_rank_dim: int = 16,
clamp_min: float = -32,
clamp_max: float = 32,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
num_slots: Optional[int] = 64,
use_short_conv: bool = True,
conv_size: int = 4,
share_conv_kernel: bool = True,
exapnd_k: float = 0.5,
exapnd_v: float = 1,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
initializer_range: float = 0.02,
tie_word_embeddings: bool = False,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.gate_low_rank_dim = gate_low_rank_dim
self.clamp_min = clamp_min
self.clamp_max = clamp_max
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_slots = num_slots
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.expand_k = exapnd_k
self.expand_v = exapnd_v
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
self.fuse_norm = fuse_norm
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,394 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.abc import ABCAttention
from fla.models.abc.configuration_abc import ABCConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class ABCMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> ABCMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class ABCBlock(nn.Module):
def __init__(self, config: ABCConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = ABCAttention(
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_slots=config.num_slots,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
clamp_min=config.clamp_min,
clamp_max=config.clamp_max,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = ABCMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class ABCPreTrainedModel(PreTrainedModel):
config_class = ABCConfig
supports_gradient_checkpointing = True
_no_split_modules = ['ABCBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class ABCModel(ABCPreTrainedModel):
def __init__(self, config: ABCConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([ABCBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`ABCModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class ABCForCausalLM(ABCPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = ABCModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
model_inputs['past_key_values'] = past_key_values
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,14 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.delta_net.configuration_delta_net import \
DeltaNetConfig
from fla.models.delta_net.modeling_delta_net import (
DeltaNetForCausalLM, DeltaNetModel)
AutoConfig.register(DeltaNetConfig.model_type, DeltaNetConfig)
AutoModel.register(DeltaNetConfig, DeltaNetModel)
AutoModelForCausalLM.register(DeltaNetConfig, DeltaNetForCausalLM)
__all__ = ['DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel']

View File

@@ -0,0 +1,77 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class DeltaNetConfig(PretrainedConfig):
model_type = 'delta_net'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 1,
expand_v: int = 1,
use_gate: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
share_conv_kernel: bool = False,
use_rope: bool = False,
use_beta: bool = True,
use_output_norm: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
attn_mode: str = "chunk",
qk_norm: str = 'l2',
qk_activation: str = 'silu',
chunk_size: int = 64,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.attn_mode = attn_mode
self.hidden_act = hidden_act
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_rope = use_rope
self.use_beta = use_beta
self.use_output_norm = use_output_norm
self.qk_norm = qk_norm
self.qk_activation = qk_activation
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,405 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.delta_net import DeltaNet
from fla.models.delta_net.configuration_delta_net import DeltaNetConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class DeltaNetMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> DeltaNetMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class DeltaNetBlock(nn.Module):
def __init__(self, config: DeltaNetConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
self.attn = DeltaNet(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
use_gate=config.use_gate,
use_rope=config.use_rope,
use_beta=config.use_beta,
use_short_conv=config.use_short_conv,
use_output_norm=config.use_output_norm,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
layer_idx=layer_idx,
qk_norm=config.qk_norm,
qk_activation=config.qk_activation
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
self.mlp = DeltaNetMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class DeltaNetPreTrainedModel(PreTrainedModel):
config_class = DeltaNetConfig
supports_gradient_checkpointing = True
_no_split_modules = ['DeltaNetBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class DeltaNetModel(DeltaNetPreTrainedModel):
def __init__(self, config: DeltaNetConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([DeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`DeltaNetModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = past_key_values
# if use_cache:
# next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class DeltaNetForCausalLM(DeltaNetPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = DeltaNetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
# breakpoint()
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.gla.configuration_gla import GLAConfig
from fla.models.gla.modeling_gla import GLAForCausalLM, GLAModel
AutoConfig.register(GLAConfig.model_type, GLAConfig)
AutoModel.register(GLAConfig, GLAModel)
AutoModelForCausalLM.register(GLAConfig, GLAForCausalLM)
__all__ = ['GLAConfig', 'GLAForCausalLM', 'GLAModel']

View File

@@ -0,0 +1,80 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class GLAConfig(PretrainedConfig):
model_type = 'gla'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 0.5,
expand_v: int = 1,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
attn_mode: str = "chunk",
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
clamp_min: Optional[float] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_gk: bool = True,
use_gv: bool = False,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.feature_map = feature_map
self.attn_mode = attn_mode
self.clamp_min = clamp_min
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_gk = use_gk
self.use_gv = use_gv
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_norm = fuse_norm
self.fuse_cross_entropy = fuse_cross_entropy
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,403 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.gla import GatedLinearAttention
from fla.models.gla.configuration_gla import GLAConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class GLAMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> GLAMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class GLABlock(nn.Module):
def __init__(self, config: GLAConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = GatedLinearAttention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_kv_heads=config.num_kv_heads,
feature_map=config.feature_map,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
use_output_gate=config.use_output_gate,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
clamp_min=config.clamp_min,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = GLAMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class GLAPreTrainedModel(PreTrainedModel):
config_class = GLAConfig
supports_gradient_checkpointing = True
_no_split_modules = ['GLABlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class GLAModel(GLAPreTrainedModel):
def __init__(self, config: GLAConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([GLABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`GLAModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class GLAForCausalLM(GLAPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = GLAModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.hgrn.configuration_hgrn import HGRNConfig
from fla.models.hgrn.modeling_hgrn import HGRNForCausalLM, HGRNModel
AutoConfig.register(HGRNConfig.model_type, HGRNConfig)
AutoModel.register(HGRNConfig, HGRNModel)
AutoModelForCausalLM.register(HGRNConfig, HGRNForCausalLM)
__all__ = ['HGRNConfig', 'HGRNForCausalLM', 'HGRNModel']

View File

@@ -0,0 +1,66 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class HGRNConfig(PretrainedConfig):
model_type = 'hgrn'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
attn_mode: str = "chunk",
vocab_size: int = 32000,
hidden_size: int = 2048,
num_hidden_layers: int = 24,
num_heads: Optional[int] = 1,
expand_ratio: Optional[int] = 1,
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_lower_bound: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.attn_mode = attn_mode
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_lower_bound = use_lower_bound
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,407 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.hgrn import HGRNAttention
from fla.models.hgrn.configuration_hgrn import HGRNConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class HGRNMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> HGRNMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class HGRNBlock(nn.Module):
def __init__(self, config: HGRNConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = HGRNAttention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
num_heads=config.num_heads,
expand_ratio=config.expand_ratio,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = HGRNMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class HGRNPreTrainedModel(PreTrainedModel):
config_class = HGRNConfig
supports_gradient_checkpointing = True
_no_split_modules = ['HGRNBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class HGRNModel(HGRNPreTrainedModel):
def __init__(self, config: HGRNConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if config.use_lower_bound:
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
self.layers = nn.ModuleList([HGRNBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`HGRNModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
if self.config.use_lower_bound:
lower_bounds = self.lower_bounds.softmax(0)
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
lower_bound
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class HGRNForCausalLM(HGRNPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = HGRNModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
from fla.models.hgrn2.modeling_hgrn2 import HGRN2ForCausalLM, HGRN2Model
AutoConfig.register(HGRN2Config.model_type, HGRN2Config)
AutoModel.register(HGRN2Config, HGRN2Model)
AutoModelForCausalLM.register(HGRN2Config, HGRN2ForCausalLM)
__all__ = ['HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model']

View File

@@ -0,0 +1,66 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class HGRN2Config(PretrainedConfig):
model_type = 'hgrn2'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
num_hidden_layers: int = 24,
attn_mode: str = "chunk",
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 128,
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_lower_bound: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.attn_mode = attn_mode
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_lower_bound = use_lower_bound
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,407 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.hgrn2 import HGRN2Attention
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class HGRN2MLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> HGRN2MLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class HGRN2Block(nn.Module):
def __init__(self, config: HGRN2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = HGRN2Attention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
num_heads=config.num_heads,
expand_ratio=config.expand_ratio,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = HGRN2MLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class HGRN2PreTrainedModel(PreTrainedModel):
config_class = HGRN2Config
supports_gradient_checkpointing = True
_no_split_modules = ['HGRN2Block']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class HGRN2Model(HGRN2PreTrainedModel):
def __init__(self, config: HGRN2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if config.use_lower_bound:
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
self.layers = nn.ModuleList([HGRN2Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`HGRN2Model` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
if self.config.use_lower_bound:
lower_bounds = self.lower_bounds.softmax(0)
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
lower_bound
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class HGRN2ForCausalLM(HGRN2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = HGRN2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,14 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.linear_attn.configuration_linear_attn import \
LinearAttentionConfig
from fla.models.linear_attn.modeling_linear_attn import (
LinearAttentionForCausalLM, LinearAttentionModel)
AutoConfig.register(LinearAttentionConfig.model_type, LinearAttentionConfig)
AutoModel.register(LinearAttentionConfig, LinearAttentionModel)
AutoModelForCausalLM.register(LinearAttentionConfig, LinearAttentionForCausalLM)
__all__ = ['LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel']

View File

@@ -0,0 +1,70 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class LinearAttentionConfig(PretrainedConfig):
model_type = 'linear_attn'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 1,
expand_v: int = 1,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
attn_mode: str = "fused_chunk",
feature_map: str = "elementwise_product",
tie_feature_map_qk: bool = False,
norm_q: bool = False,
norm_k: bool = False,
norm_feature_map: bool = False,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.attn_mode = attn_mode
self.feature_map = feature_map
self.tie_feature_map_qk = tie_feature_map_qk
self.norm_q = norm_q
self.norm_k = norm_k
self.norm_feature_map = norm_feature_map
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,424 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.linear_attn import LinearAttention
from fla.models.linear_attn.configuration_linear_attn import \
LinearAttentionConfig
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class LinearAttentionMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> LinearAttentionMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class LinearAttentionBlock(nn.Module):
def __init__(self, config: LinearAttentionConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = LinearAttention(
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
mode=config.attn_mode,
feature_map=config.feature_map,
tie_feature_map_qk=config.tie_feature_map_qk,
norm_q=config.norm_q,
norm_k=config.norm_k,
do_feature_map_norm=config.norm_feature_map,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = LinearAttentionMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# currently not supported
attn_weights, present_key_value = None, None
hidden_states = self.attn_norm(hidden_states)
hidden_states = self.attn(hidden_states)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class LinearAttentionPreTrainedModel(PreTrainedModel):
config_class = LinearAttentionConfig
supports_gradient_checkpointing = True
_no_split_modules = ['LinearAttentionBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class LinearAttentionModel(LinearAttentionPreTrainedModel):
def __init__(self, config: LinearAttentionConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[LinearAttentionBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn(
"`LinearAttentionModel` does not support output attention weights now, "
"so `output_attentions` is set to `False`."
)
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
_, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
_, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class LinearAttentionForCausalLM(LinearAttentionPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = LinearAttentionModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exc:
# Expected exception: "AttributeError: '(object name)' object has no attribute 'past_key_values'"
if 'past_key_values' in str(exc):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exc
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
state: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for inputs_ids if the state is passed along.
if state is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and state is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs["state"] = state
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,14 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.mamba.configuration_mamba import MambaConfig
from fla.models.mamba.modeling_mamba import (MambaBlock, MambaForCausalLM,
MambaModel)
AutoConfig.register(MambaConfig.model_type, MambaConfig, True)
AutoModel.register(MambaConfig, MambaModel, True)
AutoModelForCausalLM.register(MambaConfig, MambaForCausalLM, True)
__all__ = ['MambaConfig', 'MambaForCausalLM', 'MambaModel', 'MambaBlock']

View File

@@ -0,0 +1,156 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MAMBA configuration"""
import math
from transformers.configuration_utils import PretrainedConfig
class MambaConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MAMBA
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50280):
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MambaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the model.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0):
The id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 0):
The id of the end of sentence token in the vocabulary.
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
use_bias (`bool`, *optional*, defaults to `False`):
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
use_conv_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use bias in the convolution layer of the mixer block.
hidden_act (`str`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.1):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether or not residuals should be in `float32`.
If set to `False` residuals will keep the same `dtype` as the rest of the model
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
Rank of the the discretization projection matrix.
`"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
time_step_scale (`float`, *optional*, defaults to 1.0):
Scale used used to scale `dt_proj.bias`.
time_step_min (`float`, *optional*, defaults to 0.001):
Minimum `time_step` used to bound `dt_proj.bias`.
time_step_max (`float`, *optional*, defaults to 0.1):
Maximum `time_step` used to bound `dt_proj.bias`.
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
time_step_floor (`float`, *optional*, defaults to 0.0001):
Minimum clamping value of the `dt_proj.bias` layer initialization.
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
Whether or not to rescale `out_proj` weights when initializing.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the cache should be used.
Example:
```python
>>> from transformers import MambaConfig, MambaModel
>>> # Initializing a Mamba configuration
>>> configuration = MambaConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MambaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mamba"
def __init__(
self,
vocab_size=32000,
hidden_size=2048,
state_size=16,
num_hidden_layers=48,
layer_norm_epsilon=1e-5,
pad_token_id= 0,
bos_token_id= 1,
eos_token_id= 2,
expand=2,
conv_kernel=4,
use_bias=False,
use_conv_bias=True,
hidden_act="silu",
initializer_range=0.1,
residual_in_fp32=False,
time_step_rank="auto",
time_step_scale=1.0,
time_step_min=0.001,
time_step_max=0.1,
time_step_init_scheme="random",
time_step_floor=1e-4,
rescale_prenorm_residual=False,
use_cache=True,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
tie_word_embeddings: bool = False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.state_size = state_size
self.num_hidden_layers = num_hidden_layers
self.layer_norm_epsilon = layer_norm_epsilon
self.conv_kernel = conv_kernel
self.expand = expand
self.intermediate_size = int(expand * self.hidden_size)
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.use_bias = use_bias
self.use_conv_bias = use_conv_bias
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
self.time_step_scale = time_step_scale
self.time_step_min = time_step_min
self.time_step_max = time_step_max
self.time_step_init_scheme = time_step_init_scheme
self.time_step_floor = time_step_floor
self.rescale_prenorm_residual = rescale_prenorm_residual
self.residual_in_fp32 = residual_in_fp32
self.use_cache = use_cache
self.fuse_cross_entropy = fuse_cross_entropy
self.fuse_norm = fuse_norm
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)

View File

@@ -0,0 +1,605 @@
# coding=utf-8
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MAMBA model."""
import math
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from fla.models.mamba.configuration_mamba import MambaConfig
from fla.modules import FusedCrossEntropyLoss, RMSNorm
logger = logging.get_logger(__name__)
try:
from mamba_ssm.ops.selective_scan_interface import (mamba_inner_fn,
selective_scan_fn)
from mamba_ssm.ops.triton.selective_state_update import \
selective_state_update
except ImportError:
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
try:
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all(
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)
class MambaCache:
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
self.seqlen_offset = 0
self.dtype = dtype
intermediate_size = config.intermediate_size
ssm_state_size = config.state_size
conv_kernel_size = config.conv_kernel
self.conv_states = {
i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
for i in range(config.num_hidden_layers)
}
self.ssm_states = {
i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
for i in range(config.num_hidden_layers)
}
class MambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
"""
def __init__(self, config, layer_idx):
super().__init__()
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = config.intermediate_size
self.time_step_rank = config.time_step_rank
self.layer_idx = layer_idx
self.use_conv_bias = config.use_conv_bias
self.conv1d = nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=config.use_conv_bias,
kernel_size=config.conv_kernel,
groups=self.intermediate_size,
padding=config.conv_kernel - 1,
)
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
# projection of the input hidden states
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
# selective projection used to make dt, B and C input dependant
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
# time step projection (discretization)
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
A = A.expand(self.intermediate_size, -1).contiguous()
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(self.intermediate_size))
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
self.use_bias = config.use_bias
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of "
"`(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. Falling back to the naive implementation. "
"To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: Optional[MambaCache] = None):
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states).transpose(1, 2)
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
contextualized_states = mamba_inner_fn(
projected_states,
self.conv1d.weight,
self.conv1d.bias if self.use_conv_bias else None,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias.float() if self.use_bias else None,
-torch.exp(self.A_log.float()),
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
else:
hidden_states, gate = projected_states.chunk(2, dim=1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
if cache_params is not None and cache_params.seqlen_offset > 0:
hidden_states = causal_conv1d_update(
hidden_states.squeeze(-1),
cache_params.conv_states[self.layer_idx],
conv_weights,
self.conv1d.bias,
self.activation,
)
hidden_states = hidden_states.unsqueeze(-1)
else:
if cache_params is not None:
conv_states = nn.functional.pad(
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states = causal_conv1d_fn(
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
)
# 3. State Space Model sequence transformation
# 3.a. input varying initialization of time_step, B and C
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
A = -torch.exp(self.A_log.float())
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
if cache_params is not None and cache_params.seqlen_offset > 0:
scan_outputs = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states[..., 0],
discrete_time_step[..., 0],
A,
B[:, 0],
C[:, 0],
self.D,
gate[..., 0],
time_proj_bias,
dt_softplus=True,
).unsqueeze(-1)
else:
scan_outputs, ssm_state = selective_scan_fn(
hidden_states,
discrete_time_step,
A,
B.transpose(1, 2),
C.transpose(1, 2),
self.D.float(),
gate,
time_proj_bias,
delta_softplus=True,
return_last_state=True,
)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
return contextualized_states
# fmt: off
def slow_forward(self, input_states, cache_params: Optional[MambaCache] = None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
# [batch, 2 * intermediate_size, seq_len]
projected_states = self.in_proj(input_states).transpose(1, 2)
hidden_states, gate = projected_states.chunk(2, dim=1)
# 2. Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
if cache_params.seqlen_offset > 0:
# [batch, intermediate_size, conv_kernel_size]
conv_state = cache_params.conv_states[self.layer_idx]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
conv_state[:, :, -1] = hidden_states[:, :, 0]
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
# [batch, intermediate_size, 1] : decoding
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)
else:
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
# [batch, intermediate_size, seq_len]
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
else:
ssm_state = torch.zeros(
(batch_size, self.intermediate_size, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
# [batch, intermediate_size, seq_len]
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
# 3. State Space Model sequence transformation
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
# [batch, seq_len, intermediate_size]
discrete_time_step = self.dt_proj(time_step)
# [batch, intermediate_size, seq_len]
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2)
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
# [intermediate_size, ssm_state_size]
A = -torch.exp(self.A_log.float())
# [batch, intermediate_size, seq_len, ssm_state_size]
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None])
# [batch, intermediade_size, seq_len, ssm_state_size]
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float()
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
scan_outputs = []
for i in range(seq_len):
# [batch, intermediade_size, ssm_state]
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]
# [batch, intermediade_size, 1]
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1))
scan_outputs.append(scan_output[:, :, 0])
# [batch, seq_len, intermediade_size]
scan_output = torch.stack(scan_outputs, dim=-1)
scan_output = scan_output + (hidden_states * self.D[None, :, None])
scan_output = (scan_output * self.act(gate))
if cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
# [batch, seq_len, hidden_size]
contextualized_states = self.out_proj(scan_output.transpose(1, 2))
return contextualized_states
# fmt: on
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type:
return self.cuda_kernels_forward(hidden_states, cache_params)
return self.slow_forward(hidden_states, cache_params)
class MambaBlock(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.residual_in_fp32 = config.residual_in_fp32
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mixer = MambaMixer(config, layer_idx=layer_idx)
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
residual = hidden_states
hidden_states = self.norm(hidden_states)
# if self.residual_in_fp32:
# residual = residual.to(torch.float32)
hidden_states = self.mixer(hidden_states, cache_params=cache_params)
hidden_states = residual + hidden_states
return hidden_states
class MambaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MambaConfig
base_model_prefix = "backbone"
_no_split_modules = ["MambaBlock"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, MambaMixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
if self.config.time_step_init_scheme == "constant":
nn.init.constant_(module.dt_proj.weight, dt_init_std)
elif self.config.time_step_init_scheme == "random":
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
dt = torch.exp(
torch.rand(self.config.intermediate_size)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_proj.bias.copy_(inv_dt)
module.dt_proj.bias._no_reinit = True
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=self.config.initializer_range)
if self.config.rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(self.config.num_layers)
@dataclass
class MambaOutput(ModelOutput):
"""
Class for the MAMBA model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
cache_params: Optional[MambaCache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class MambaCausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
cache_params: Optional[MambaCache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class MambaModel(MambaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
cache_params: Optional[MambaCache] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # `attention_mask` is passed by the tokenizer and we don't want it
) -> Union[Tuple, MambaOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if cache_params is None and use_cache:
cache_params = MambaCache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
for mixer_block in self.layers:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(mixer_block.__call__, hidden_states, cache_params)
else:
hidden_states = mixer_block(hidden_states, cache_params=cache_params)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if use_cache:
cache_params.seqlen_offset += inputs_embeds.shape[1]
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
return MambaOutput(
last_hidden_state=hidden_states,
cache_params=cache_params if use_cache else None,
hidden_states=all_hidden_states,
)
class MambaForCausalLM(MambaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.backbone = MambaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.backbone.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.backbone.set_input_embeddings(new_embeddings)
def _update_model_kwargs_for_generation(
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], **kwargs
) -> Dict[str, Any]:
model_kwargs["cache_params"] = outputs.get("cache_params", None)
return model_kwargs
def prepare_inputs_for_generation(
self, input_ids, cache_params: Optional[MambaCache] = None, inputs_embeds=None, attention_mask=None, **kwargs
):
# only last token for inputs_ids if the state is passed along.
if cache_params is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
if inputs_embeds is not None and cache_params is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs["cache_params"] = cache_params
return model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_params: Optional[MambaCache] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: Optional[bool] = None,
**kwargs, # for now we need this for generation
) -> Union[Tuple, MambaCausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mamba_outputs = self.backbone(
input_ids,
cache_params=cache_params,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=use_cache,
)
hidden_states = mamba_outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + mamba_outputs[1:]
return (loss,) + output if loss is not None else output
return MambaCausalLMOutput(
loss=loss,
logits=logits,
cache_params=mamba_outputs.cache_params,
hidden_states=mamba_outputs.hidden_states,
)

View File

@@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.retnet.configuration_retnet import RetNetConfig
from fla.models.retnet.modeling_retnet import RetNetForCausalLM, RetNetModel
AutoConfig.register(RetNetConfig.model_type, RetNetConfig)
AutoModel.register(RetNetConfig, RetNetModel)
AutoModelForCausalLM.register(RetNetConfig, RetNetForCausalLM)
__all__ = ['RetNetConfig', 'RetNetForCausalLM', 'RetNetModel']

View File

@@ -0,0 +1,76 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class RetNetConfig(PretrainedConfig):
model_type = 'retnet'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 1,
expand_v: int = 2,
hidden_ratio: Optional[int] = 2,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 8,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
attn_mode: str = "fused_chunk",
hidden_act: str = "swish",
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
) -> RetNetConfig:
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.feature_map = feature_map
self.attn_mode = attn_mode
self.hidden_act = hidden_act
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_norm = fuse_norm
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,410 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.multiscale_retention import MultiScaleRetention
from fla.models.retnet.configuration_retnet import RetNetConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class RetNetMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> RetNetMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class RetNetBlock(nn.Module):
def __init__(self, config: RetNetConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = MultiScaleRetention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_kv_heads=config.num_kv_heads,
feature_map=config.feature_map,
use_output_gate=config.use_output_gate,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = RetNetMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class RetNetPreTrainedModel(PreTrainedModel):
config_class = RetNetConfig
supports_gradient_checkpointing = True
_no_split_modules = ['RetNetBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class RetNetModel(RetNetPreTrainedModel):
def __init__(self, config: RetNetConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[RetNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn(
"`RetNetModel` does not support output attention weights now, so `output_attentions` is set to `False`."
)
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_len = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class RetNetForCausalLM(RetNetPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RetNetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
# Expected exception: "AttributeError: '(object name)' object has no attribute 'past_key_values'"
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.rwkv6.configuration_rwkv6 import RWKV6Config
from fla.models.rwkv6.modeling_rwkv6 import RWKV6ForCausalLM, RWKV6Model
AutoConfig.register(RWKV6Config.model_type, RWKV6Config)
AutoModel.register(RWKV6Config, RWKV6Model)
AutoModelForCausalLM.register(RWKV6Config, RWKV6ForCausalLM)
__all__ = ['RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model']

View File

@@ -0,0 +1,66 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class RWKV6Config(PretrainedConfig):
model_type = 'rwkv6'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
attn_mode: str = "chunk",
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 0.5,
expand_v: int = 1,
hidden_ratio: Optional[int] = 3.5,
intermediate_size: Optional[int] = None,
use_glu: Optional[bool] = False,
num_hidden_layers: int = 24,
num_heads: int = 4,
proj_low_rank_dim: int = 32,
gate_low_rank_dim: int = 64,
hidden_act: str = "sqrelu",
max_position_embeddings: int = 2048,
eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.use_glu = use_glu
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.proj_low_rank_dim = proj_low_rank_dim
self.gate_low_rank_dim = gate_low_rank_dim
self.attn_mode = attn_mode
self.hidden_act = hidden_act
self.eps = eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_norm = fuse_norm
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,443 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.rwkv6 import LerpLinear, RWKV6Attention
from fla.models.rwkv6.configuration_rwkv6 import RWKV6Config
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, LayerNorm
from fla.modules.activations import ACT2FN, swiglu_linear
logger = logging.get_logger(__name__)
class RWKV6FeedForward(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'sqrelu',
layer_idx: int = None
) -> RWKV6FeedForward:
super().__init__()
self.hidden_size = hidden_size
if hidden_ratio is None:
hidden_ratio = 3.5
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio)
intermediate_size = 32 * ((intermediate_size + 32 - 1) // 32)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = LerpLinear(hidden_size, intermediate_size)
self.value = nn.Linear(intermediate_size, hidden_size)
self.receptance = LerpLinear(hidden_size, hidden_size)
self.act_fn = ACT2FN[hidden_act]
self.layer_idx = layer_idx
def forward(self, x: torch.Tensor, state: Optional[torch.Tensor] = None) -> torch.Tensor:
if state is not None:
raise NotImplementedError("Past state is not yet supported in `RWKV6FeedForward`.")
shifted = self.time_shift(x)
if len(shifted.shape) == 2:
shifted = shifted.unsqueeze(1)
delta = shifted - x
key = self.act_fn(self.key(x, delta))
value = self.value(key)
receptance = self.receptance(x, delta)
return receptance.sigmoid() * value
class RWKV6GLU(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish',
layer_idx: int = None
) -> RWKV6GLU:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.layer_idx = layer_idx
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class RWKV6Block(nn.Module):
def __init__(self, config: RWKV6Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = LayerNorm(hidden_size=config.hidden_size, eps=config.eps)
self.attn = RWKV6Attention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
proj_low_rank_dim=config.proj_low_rank_dim,
gate_low_rank_dim=config.gate_low_rank_dim,
eps=config.eps,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.ffn_norm = LayerNorm(hidden_size=config.hidden_size, eps=config.eps)
self.ffn = (RWKV6GLU if config.use_glu else RWKV6FeedForward)(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
layer_idx=layer_idx
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.ffn_norm(hidden_states, residual, True)
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class RWKV6PreTrainedModel(PreTrainedModel):
config_class = RWKV6Config
supports_gradient_checkpointing = True
_no_split_modules = ['RWKV6Block']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Parameter):
nn.init.normal_(module, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class RWKV6Model(RWKV6PreTrainedModel):
def __init__(self, config: RWKV6Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([RWKV6Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = LayerNorm(config.hidden_size, eps=config.eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`RWKV6Model` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class RWKV6ForCausalLM(RWKV6PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RWKV6Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@@ -0,0 +1,14 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.transformer.configuration_transformer import TransformerConfig
from fla.models.transformer.modeling_transformer import (
TransformerForCausalLM, TransformerModel)
AutoConfig.register(TransformerConfig.model_type, TransformerConfig)
AutoModel.register(TransformerConfig, TransformerModel)
AutoModelForCausalLM.register(TransformerConfig, TransformerForCausalLM)
__all__ = ['TransformerConfig', 'TransformerForCausalLM', 'TransformerModel']

View File

@@ -0,0 +1,61 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class TransformerConfig(PretrainedConfig):
model_type = 'transformer'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 32,
num_kv_heads: int = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
initializer_range: float = 0.02,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
attention_bias: bool = False,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.attention_bias = attention_bias
self.fuse_cross_entropy = fuse_cross_entropy
self.fuse_norm = fuse_norm
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -0,0 +1,522 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.models.transformer.configuration_transformer import TransformerConfig
from fla.modules import FusedCrossEntropyLoss, RMSNorm, RotaryEmbedding
from fla.modules.activations import swiglu_linear
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import (index_first_axis, pad_input,
unpad_input)
except ImportError:
warnings.warn("Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`")
flash_attn_func = None
logger = logging.get_logger(__name__)
class TransformerAttention(nn.Module):
def __init__(
self,
config: TransformerConfig,
layer_idx: Optional[int] = None,
**kwargs
):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.num_heads = config.num_heads
if config.num_kv_heads is None:
self.num_kv_heads = self.num_heads
else:
self.num_kv_heads = config.num_kv_heads
self.num_kv_groups = config.num_heads // self.num_kv_heads
self.hidden_size = config.hidden_size
self.head_dim = self.hidden_size // self.num_heads
self.kv_dim = self.num_kv_heads * self.head_dim
self.kv_dim = self.num_kv_heads * self.head_dim
self.max_position_embeddings = config.max_position_embeddings
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary = RotaryEmbedding(self.head_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
batch_size, q_len, _ = hidden_states.size()
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', h=self.num_kv_heads)
v = rearrange(self.v_proj(hidden_states), 'b t (h d) -> b h t d', h=self.num_kv_heads)
seqlen_offset = 0
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
if attention_mask is not None:
# to deliminate the offsets of padding tokens
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
q, k = self.rotary(q, k, seqlen_offset, self.max_position_embeddings)
k = rearrange(k, 'b t h d -> b h t d')
if past_key_values is not None:
k, v = past_key_values.update(k, v, self.layer_idx)
k, v = rearrange(k, 'b h t d -> b t h d'), rearrange(v, 'b h t d -> b t h d')
if self.num_kv_groups > 1:
k = rearrange(k.unsqueeze(-2).repeat(1, 1, 1, self.num_kv_groups, 1), 'b t h g d -> b t (h g) d')
v = rearrange(v.unsqueeze(-2).repeat(1, 1, 1, self.num_kv_groups, 1), 'b t h g d -> b t (h g) d')
if flash_attn_func is None:
raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
# Contains at least one padding token in the sequence
if attention_mask is not None:
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_q, max_seqlen_k = max_seq_lens
o = flash_attn_varlen_func(
q, k, v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
causal=True
)
o = pad_input(o, indices_q, batch_size, q_len)
else:
o = flash_attn_func(q, k, v, causal=True)
o = o.reshape(batch_size, q_len, self.hidden_size)
o = self.o_proj(o)
if not output_attentions:
attentions = None
return o, attentions, past_key_values
def _upad_input(self, q, k, v, attention_mask, q_len):
seqlens = attention_mask.sum(-1, dtype=torch.int32)
indices_k = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_k = seqlens.max().item()
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
if q_len == seq_len:
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
cu_seqlens_q = cu_seqlens_k
max_seqlen_q = max_seqlen_k
indices_q = indices_k
elif q_len == 1:
max_seqlen_q = 1
# There is a memcpy here, that is very bad.
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
indices_q = cu_seqlens_q[:-1]
q = q.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -q_len:]
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
class TransformerMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> TransformerMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class TransformerBlock(nn.Module):
def __init__(self, config: TransformerConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = TransformerAttention(
config=config,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = TransformerMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attentions,)
if use_cache:
outputs += (past_key_values,)
return outputs
class TransformerPreTrainedModel(PreTrainedModel):
config_class = TransformerConfig
supports_gradient_checkpointing = True
_no_split_modules = ['TransformerBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class TransformerModel(TransformerPreTrainedModel):
def __init__(self, config: TransformerConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([TransformerBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, CausalLMOutputWithPast]:
if output_attentions:
warnings.warn(
"`TransformerModel` does not support output attention weights now, so `output_attentions` is set to `False`."
)
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
next_decoder_cache = None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
output_attentions,
use_cache
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class TransformerForCausalLM(TransformerPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = TransformerModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

107
finetune/lora/v6/fla/models/utils.py vendored Normal file
View File

@@ -0,0 +1,107 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Any, Dict, List, Optional, Tuple
import torch
from transformers.cache_utils import Cache
class RecurrentCache(Cache):
"""
A cache used for storing hidden states produced by flash linear attention models.
It stores the states of each layer as the tensor of shape `[batch_size, key_dim, value_dim]`.
"""
def __init__(
self,
seen_tokens: int = 0
) -> RecurrentCache:
self.states: List[torch.Tensor] = []
self._seen_tokens = seen_tokens # Used in `generate` to keep tally of how many tokens the cache has seen
def __getitem__(self, layer_idx: int) -> torch.Tensor:
if layer_idx < len(self):
return self.states[layer_idx]
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
for state in self.states:
yield state
def __len__(self):
return len(self.states)
def update(
self,
state: Tuple[torch.Tensor],
layer_idx: int,
offset: Optional[int] = 1,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor]:
"""
Updates the cache with the new `state` for the layer `layer_idx`.
Parameters:
state (`Tuple[torch.Tensor]`):
The new state to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
offset (`int`):
The offset of current fed tokens.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass.
Return:
The updated state.
"""
if isinstance(state, torch.Tensor):
state = (state,)
if len(self.states) <= layer_idx:
self.states.append(state)
else:
for i, s in enumerate(state):
self.states[layer_idx][i].copy_(s)
# update the number of seen tokens once we achieve the last layer
if layer_idx == len(self) - 1:
self._seen_tokens += offset
return state
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
if len(self.states) <= layer_idx:
return 0
return self._seen_tokens
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. RecurrentCache does not have a maximum length."""
return None
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.states)):
device = self.states[layer_idx].device
self.states[layer_idx] = self.states[layer_idx].index_select(0, beam_idx.to(device))
def to_legacy_cache(self) -> Tuple[torch.Tensor]:
return tuple(self.states)
@classmethod
def from_legacy_cache(
cls,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
seen_tokens: int = 0
) -> RecurrentCache:
"""Converts a cache in the legacy cache format into an equivalent `RecurrentCache`."""
cache = cls(seen_tokens)
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
cache.update(past_key_values[layer_idx], layer_idx)
return cache