add usage

This commit is contained in:
josc146
2023-06-20 15:55:52 +08:00
parent 4b2509e643
commit e93c77394d
2 changed files with 36 additions and 18 deletions

View File

@@ -1,7 +1,7 @@
import os
import pathlib
import copy
from typing import Dict, List
from typing import Dict, List, Tuple
from utils.log import quick_log
from fastapi import HTTPException
from pydantic import BaseModel, Field
@@ -71,7 +71,7 @@ The following is a coherent verbose detailed conversation between a girl named {
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
logits = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
try:
state_cache.add_state(
state_cache.AddStateBody(
@@ -92,6 +92,7 @@ The following is a coherent verbose detailed conversation between a girl named {
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
while len(tokens) > 0:
@@ -104,23 +105,24 @@ The following is a coherent verbose detailed conversation between a girl named {
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out
return out, token_len
def get_embedding(self, input: str, fast_mode: bool) -> List[float]:
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
if fast_mode:
embedding = self.fast_embedding(
embedding, token_len = self.fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
)
else:
self.model_state = None
self.model_tokens = []
self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
_, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
embedding = self.model_state[-5].tolist()
embedding = (embedding / np.linalg.norm(embedding)).tolist()
return embedding
return embedding, token_len
def fast_embedding(self, tokens: List[str], state):
tokens = [int(x) for x in tokens]
token_len = len(tokens)
self = self.model
with torch.no_grad():
@@ -253,7 +255,7 @@ The following is a coherent verbose detailed conversation between a girl named {
ory,
)
return state[0].tolist()
return state[0].tolist(), token_len
def generate(self, prompt: str, stop: str = None):
quick_log(None, None, "Generation Prompt:\n" + prompt)
@@ -274,8 +276,11 @@ The following is a coherent verbose detailed conversation between a girl named {
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
prompt_token_len = 0
if delta_prompt != "":
logits = self.run_rnn(self.fix_tokens(self.pipeline.encode(delta_prompt)))
logits, prompt_token_len = self.run_rnn(
self.fix_tokens(self.pipeline.encode(delta_prompt))
)
try:
state_cache.add_state(
state_cache.AddStateBody(
@@ -293,6 +298,7 @@ The following is a coherent verbose detailed conversation between a girl named {
occurrence: Dict = {}
completion_token_len = 0
response = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
@@ -305,14 +311,15 @@ The following is a coherent verbose detailed conversation between a girl named {
)
if token == END_OF_TEXT:
yield response, ""
yield response, "", prompt_token_len, completion_token_len
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = self.run_rnn([token])
logits, _ = self.run_rnn([token])
completion_token_len = completion_token_len + 1
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
@@ -330,7 +337,7 @@ The following is a coherent verbose detailed conversation between a girl named {
)
except HTTPException:
pass
yield response, ""
yield response, "", prompt_token_len, completion_token_len
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
@@ -345,7 +352,7 @@ The following is a coherent verbose detailed conversation between a girl named {
)
except HTTPException:
pass
yield response, delta
yield response, delta, prompt_token_len, completion_token_len
class ModelConfigBody(BaseModel):