support for rwkv-4-world

This commit is contained in:
josc146 2023-05-28 12:53:14 +08:00
parent b7fb8ed898
commit 94971bb666
8 changed files with 65918 additions and 65 deletions

View File

@ -11,10 +11,6 @@ import global_var
router = APIRouter()
interface = ":"
user = "Bob"
bot = "Alice"
class Message(BaseModel):
role: str
@ -44,17 +40,27 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
completion_text = f"""
interface = model.interface
user = model.user
bot = model.bot
completion_text = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if user == "Bob"
else ""
)
for message in body.messages:
if message.role == "system":
completion_text = (
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
if user == "Bob"
else ""
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
@ -101,8 +107,7 @@ The following is a coherent verbose detailed conversation between a girl named {
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model,
for response, delta in model.generate(
completion_text,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
@ -141,8 +146,7 @@ The following is a coherent verbose detailed conversation between a girl named {
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model,
for response, delta in model.generate(
completion_text,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
@ -200,9 +204,7 @@ async def completions(body: CompletionBody, request: Request):
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
yield json.dumps(
@ -238,9 +240,7 @@ async def completions(body: CompletionBody, request: Request):
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
# torch_gc()

View File

@ -11,6 +11,19 @@ import GPUtil
router = APIRouter()
def get_tokens_path(model_path: str):
model_path = model_path.lower()
default_tokens_path = (
f"{pathlib.Path(__file__).parent.parent.resolve()}/20B_tokenizer.json"
)
if "raven" in model_path:
return default_tokens_path
elif "world" in model_path:
return "rwkv_vocab_v20230424"
else:
return default_tokens_path
class SwitchModelBody(BaseModel):
model: str
strategy: str
@ -36,7 +49,7 @@ def switch_model(body: SwitchModelBody, response: Response):
RWKV(
model=body.model,
strategy=body.strategy,
tokens_path=f"{pathlib.Path(__file__).parent.parent.resolve()}/20B_tokenizer.json",
tokens_path=get_tokens_path(body.model),
),
)
except Exception as e:

View File

@ -0,0 +1,106 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
class TRIE:
__slots__ = tuple("ch,to,values,front".split(","))
to: list
values: set
def __init__(self, front=None, ch=None):
self.ch = ch
self.to = [None for ch in range(256)]
self.values = set()
self.front = front
def __repr__(self):
fr = self
ret = []
while fr != None:
if fr.ch != None:
ret.append(fr.ch)
fr = fr.front
return "<TRIE %s %s>" % (ret[::-1], self.values)
def add(self, key: bytes, idx: int = 0, val=None):
if idx == len(key):
if val is None:
val = key
self.values.add(val)
return self
ch = key[idx]
if self.to[ch] is None:
self.to[ch] = TRIE(front=self, ch=ch)
return self.to[ch].add(key, idx=idx + 1, val=val)
def find_longest(self, key: bytes, idx: int = 0):
u: TRIE = self
ch: int = key[idx]
while u.to[ch] is not None:
u = u.to[ch]
idx += 1
if u.values:
ret = idx, u, u.values
if idx == len(key):
break
ch = key[idx]
return ret
class TRIE_TOKENIZER:
def __init__(self, file_name):
self.idx2token = {}
sorted = [] # must be already sorted
with open(file_name, "r", encoding="utf-8") as f:
lines = f.readlines()
for l in lines:
idx = int(l[: l.index(" ")])
x = eval(l[l.index(" ") : l.rindex(" ")])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(" ") :])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
self.root = TRIE()
for t, i in self.token2idx.items():
_ = self.root.add(t, val=(t, i))
def encodeBytes(self, src: bytes) -> list[int]:
idx: int = 0
tokens: list[int] = []
while idx < len(src):
_idx: int = idx
idx, _, values = self.root.find_longest(src, idx)
assert idx != _idx
_, token = next(iter(values))
tokens.append(token)
return tokens
def decodeBytes(self, tokens):
return b"".join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
try:
return self.decodeBytes(tokens).decode("utf-8")
except:
return "\ufffd" # bad utf-8
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode("utf-8")
except:
pass
print(f"{repr(s)}{i}", end=" ")
print()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,142 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os, sys
import numpy as np
import torch
from torch.nn import functional as F
class PIPELINE_ARGS:
def __init__(
self,
temperature=1.0,
top_p=0.85,
top_k=0,
alpha_frequency=0.2,
alpha_presence=0.2,
token_ban=[],
token_stop=[],
chunk_len=256,
):
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
self.token_ban = token_ban # ban the generation of some tokens
self.token_stop = token_stop # stop generation whenever you see any token here
self.chunk_len = (
chunk_len # split input into chunks to save VRAM (shorter -> slower)
)
class PIPELINE:
def __init__(self, model, WORD_NAME):
self.model = model
if WORD_NAME == "cl100k_base":
import tiktoken
self.tokenizer = tiktoken.get_encoding(WORD_NAME)
elif WORD_NAME == "rwkv_vocab_v20230424":
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from rwkv_tokenizer import TRIE_TOKENIZER
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
else:
from tokenizers import Tokenizer
self.tokenizer = Tokenizer.from_file(WORD_NAME)
def refine_context(self, context):
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def encode(self, x):
if "Tokenizer" in str(type(self.tokenizer)):
return self.tokenizer.encode(x).ids
else:
return self.tokenizer.encode(x)
def decode(self, x):
return self.tokenizer.decode(x)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
probs = F.softmax(logits.float(), dim=-1)
top_k = int(top_k)
if probs.device == torch.device("cpu"):
probs = probs.numpy()
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return int(out)
else:
sorted_ids = torch.argsort(probs)
sorted_probs = probs[sorted_ids]
sorted_probs = torch.flip(sorted_probs, dims=(0,))
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return int(out)
def generate(
self, ctx, token_count=100, args=PIPELINE_ARGS(), callback=None, state=None
):
all_tokens = []
out_last = 0
out_str = ""
occurrence = {}
for i in range(token_count):
# forward & adjust prob.
tokens = self.encode(ctx) if i == 0 else [token]
while len(tokens) > 0:
out, state = self.model.forward(tokens[: args.chunk_len], state)
tokens = tokens[args.chunk_len :]
for n in args.token_ban:
out[n] = -float("inf")
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
# sampler
token = self.sample_logits(
out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k
)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
# output
tmp = self.decode(all_tokens[out_last:])
if "\ufffd" not in tmp: # is valid utf-8 string?
if callback:
callback(tmp)
out_str += tmp
out_last = i + 1
return out_str

View File

@ -1,8 +1,103 @@
import os
import pathlib
from typing import Dict
from langchain.llms import RWKV
from typing import Dict, List
from pydantic import BaseModel
from rwkv_pip.utils import PIPELINE
END_OF_TEXT = 0
END_OF_LINE = 187
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
class RWKV:
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None
self.model_tokens = []
self.CHUNK_LEN = 256
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.5
self.penalty_alpha_presence = 0.4
self.penalty_alpha_frequency = 0.4
self.interface = ":"
if "rwkv_vocab" in tokens_path:
self.user = "Human"
self.bot = "Bot"
else:
self.user = "Bob"
self.bot = "Alice"
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens]
self.model_tokens += tokens
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out
def generate(self, prompt: str, stop: str = None):
self.model_state = None
self.model_tokens = []
logits = self.run_rnn(self.pipeline.encode(prompt))
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = self.run_rnn([token])
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
yield response, ""
break
out_last = begin + i + 1
yield response, delta
class ModelConfigBody(BaseModel):
@ -34,47 +129,3 @@ def get_rwkv_config(model: RWKV) -> ModelConfigBody:
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
)
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
def rwkv_generate(model: RWKV, prompt: str, stop: str = None):
model.model_state = None
model.model_tokens = []
logits = model.run_rnn(model.tokenizer.encode(prompt).ids)
begin = len(model.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(model.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
model.penalty_alpha_presence
+ occurrence[n] * model.penalty_alpha_frequency
)
token = model.pipeline.sample_logits(
logits, temperature=model.temperature, top_p=model.top_p
)
END_OF_TEXT = 0
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = model.run_rnn([token])
delta: str = model.tokenizer.decode(model.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
yield response, ""
break
yield response, delta
out_last = begin + i + 1

View File

@ -54,6 +54,14 @@
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/torch.py",
"path": "backend-python/utils/torch.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/rwkv_tokenizer.py",
"path": "backend-python/rwkv_pip/rwkv_tokenizer.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/utils.py",
"path": "backend-python/rwkv_pip/utils.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd",
"path": "backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd"
@ -67,8 +75,12 @@
"path": "backend-python/wkv_cuda_utils/wkv_cuda_model.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/20B_tokenizer.json",
"path": "backend-python/20B_tokenizer.json"
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/rwkv_vocab_v20230424.txt",
"path": "backend-python/rwkv_pip/rwkv_vocab_v20230424.txt"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/20B_tokenizer.json",
"path": "backend-python/rwkv_pip/20B_tokenizer.json"
},
{
"url": "https://cdn.jsdelivr.net/gh/pypa/get-pip/public/get-pip.py",