upgrade rwkv pip (0.8.13)
This commit is contained in:
parent
bd4de12e05
commit
79851433f8
Binary file not shown.
Binary file not shown.
124
backend-python/rwkv_pip/cuda/att_one.cu
vendored
Normal file
124
backend-python/rwkv_pip/cuda/att_one.cu
vendored
Normal file
@ -0,0 +1,124 @@
|
|||||||
|
#include "ATen/ATen.h"
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
#include <cuda_runtime.h>
|
||||||
|
#include <torch/extension.h>
|
||||||
|
|
||||||
|
#include "element_wise.h"
|
||||||
|
#include "util.h"
|
||||||
|
|
||||||
|
// Equivalent Python code:
|
||||||
|
// ww = t_first + k
|
||||||
|
// p = torch.maximum(pp, ww)
|
||||||
|
// e1 = torch.exp(pp - p)
|
||||||
|
// e2 = torch.exp(ww - p)
|
||||||
|
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||||
|
// ww = t_decay + pp
|
||||||
|
// p = torch.maximum(ww, k)
|
||||||
|
// e1 = torch.exp(ww - p)
|
||||||
|
// e2 = torch.exp(k - p)
|
||||||
|
// t1 = e1 * aa + e2 * v
|
||||||
|
// t2 = e1 * bb + e2
|
||||||
|
// r = r * wkv
|
||||||
|
// return t1, t2, p, r
|
||||||
|
struct WkvForwardOne {
|
||||||
|
const float *t_first;
|
||||||
|
const float *k;
|
||||||
|
const float *pp;
|
||||||
|
const float *aa;
|
||||||
|
const float *bb;
|
||||||
|
const float *t_decay;
|
||||||
|
const float *v;
|
||||||
|
/* out */ float *t1;
|
||||||
|
/* out */ float *t2;
|
||||||
|
/* out */ float *p;
|
||||||
|
/* in & out */ half *r;
|
||||||
|
|
||||||
|
__device__ void operator()(int i) const {
|
||||||
|
float ww = t_first[i] + k[i];
|
||||||
|
float pp_ = pp[i];
|
||||||
|
float p_ = (pp_ > ww) ? pp_ : ww;
|
||||||
|
float e1 = expf(pp_ - p_);
|
||||||
|
float e2 = expf(ww - p_);
|
||||||
|
float aa_ = aa[i];
|
||||||
|
float bb_ = bb[i];
|
||||||
|
float v_ = v[i];
|
||||||
|
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
|
||||||
|
ww = t_decay[i] + pp_;
|
||||||
|
float k_ = k[i];
|
||||||
|
p_ = (ww > k_) ? ww : k_;
|
||||||
|
e1 = expf(ww - p_);
|
||||||
|
e2 = expf(k_ - p_);
|
||||||
|
t1[i] = e1 * aa_ + e2 * v_;
|
||||||
|
t2[i] = e1 * bb_ + e2;
|
||||||
|
p[i] = p_;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
Equivalent Python code:
|
||||||
|
kx = xx * k_mix + sx * (1 - k_mix)
|
||||||
|
vx = xx * v_mix + sx * (1 - v_mix)
|
||||||
|
rx = xx * r_mix + sx * (1 - r_mix)
|
||||||
|
*/
|
||||||
|
|
||||||
|
struct Mix {
|
||||||
|
const half *xx;
|
||||||
|
const half *sx;
|
||||||
|
const half *k_mix;
|
||||||
|
const half *v_mix;
|
||||||
|
const half *r_mix;
|
||||||
|
/* out */ half *kx;
|
||||||
|
/* out */ half *vx;
|
||||||
|
/* out */ half *rx;
|
||||||
|
|
||||||
|
__device__ void operator()(int i) const {
|
||||||
|
half xx_ = xx[i];
|
||||||
|
half sx_ = sx[i];
|
||||||
|
half k_mix_ = k_mix[i];
|
||||||
|
half v_mix_ = v_mix[i];
|
||||||
|
half r_mix_ = r_mix[i];
|
||||||
|
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||||
|
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||||
|
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
using torch::Tensor;
|
||||||
|
|
||||||
|
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
|
||||||
|
|
||||||
|
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
||||||
|
Tensor v_mix, Tensor r_mix, Tensor kw,
|
||||||
|
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
||||||
|
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||||
|
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
||||||
|
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
||||||
|
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
||||||
|
/* out */ Tensor t2, /* out */ Tensor p) {
|
||||||
|
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||||
|
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
||||||
|
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
||||||
|
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
||||||
|
data_ptr<half>(vx), data_ptr<half>(rx)},
|
||||||
|
x.numel());
|
||||||
|
|
||||||
|
gemm_fp16_cublas(kx, kw, k);
|
||||||
|
gemm_fp16_cublas(vx, vw, v);
|
||||||
|
gemm_fp16_cublas(rx, rw, r);
|
||||||
|
at::sigmoid_(r);
|
||||||
|
|
||||||
|
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
|
||||||
|
data_ptr<float>(pp), data_ptr<float>(aa),
|
||||||
|
data_ptr<float>(bb), data_ptr<float>(t_decay),
|
||||||
|
data_ptr<float>(v), data_ptr<float>(t1),
|
||||||
|
data_ptr<float>(t2), data_ptr<float>(p),
|
||||||
|
data_ptr<half>(r)},
|
||||||
|
x.numel());
|
||||||
|
|
||||||
|
gemm_fp16_cublas(r, ow, x_plus_out);
|
||||||
|
x_plus_out += x;
|
||||||
|
return xx;
|
||||||
|
}
|
179
backend-python/rwkv_pip/cuda/att_seq.cu
vendored
Normal file
179
backend-python/rwkv_pip/cuda/att_seq.cu
vendored
Normal file
@ -0,0 +1,179 @@
|
|||||||
|
#include "ATen/ATen.h"
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
#include <cuda_runtime.h>
|
||||||
|
#include <torch/extension.h>
|
||||||
|
|
||||||
|
#include "util.h"
|
||||||
|
#include "element_wise.h"
|
||||||
|
|
||||||
|
using torch::Tensor;
|
||||||
|
|
||||||
|
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
|
||||||
|
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
|
||||||
|
int n, int k, bool output_fp32);
|
||||||
|
|
||||||
|
// based on `kernel_wkv_forward`, fusing more operations
|
||||||
|
__global__ void kernel_wkv_forward_new(
|
||||||
|
const int B, const int T, const int C, const float *__restrict__ const _w,
|
||||||
|
const float *__restrict__ const _u, const float *__restrict__ const _k,
|
||||||
|
const float *__restrict__ const _v, const half *__restrict__ const r,
|
||||||
|
half *__restrict__ const _y, float *__restrict__ const _aa,
|
||||||
|
float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||||
|
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
const int _b = idx / C;
|
||||||
|
const int _c = idx % C;
|
||||||
|
const int _offset = _b * T * C + _c;
|
||||||
|
const int _state_offset = _b * C + _c;
|
||||||
|
|
||||||
|
float u = _u[_c];
|
||||||
|
float w = _w[_c];
|
||||||
|
const float *__restrict__ const k = _k + _offset;
|
||||||
|
const float *__restrict__ const v = _v + _offset;
|
||||||
|
half *__restrict__ const y = _y + _offset;
|
||||||
|
|
||||||
|
float aa = _aa[_state_offset];
|
||||||
|
float bb = _bb[_state_offset];
|
||||||
|
float pp = _pp[_state_offset];
|
||||||
|
for (int i = 0; i < T; i++) {
|
||||||
|
const int ii = i * C;
|
||||||
|
const float kk = k[ii];
|
||||||
|
const float vv = v[ii];
|
||||||
|
float ww = u + kk;
|
||||||
|
float p = max(pp, ww);
|
||||||
|
float e1 = exp(pp - p);
|
||||||
|
float e2 = exp(ww - p);
|
||||||
|
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||||
|
ww = w + pp;
|
||||||
|
p = max(ww, kk);
|
||||||
|
e1 = exp(ww - p);
|
||||||
|
e2 = exp(kk - p);
|
||||||
|
aa = e1 * aa + e2 * vv;
|
||||||
|
bb = e1 * bb + e2;
|
||||||
|
pp = p;
|
||||||
|
}
|
||||||
|
_aa[_state_offset] = aa;
|
||||||
|
_bb[_state_offset] = bb;
|
||||||
|
_pp[_state_offset] = pp;
|
||||||
|
}
|
||||||
|
|
||||||
|
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
|
||||||
|
float *v, half *r, half *y, float *aa, float *bb,
|
||||||
|
float *pp) {
|
||||||
|
dim3 threadsPerBlock(min(C, 32));
|
||||||
|
assert(B * C % threadsPerBlock.x == 0);
|
||||||
|
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||||
|
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
|
||||||
|
y, aa, bb, pp);
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||||
|
const half *v_mix, const half *r_mix,
|
||||||
|
const int outer_size, const int inner_size, half *kx,
|
||||||
|
half *vx, half *rx) {
|
||||||
|
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||||
|
idx2 += blockDim.x * gridDim.x) {
|
||||||
|
half k_mix_ = k_mix[idx2];
|
||||||
|
half v_mix_ = v_mix[idx2];
|
||||||
|
half r_mix_ = r_mix[idx2];
|
||||||
|
for (int row = 0; row < outer_size; ++row) {
|
||||||
|
int idx1 = row * inner_size + idx2;
|
||||||
|
half xx_ = xx[idx1];
|
||||||
|
half sx_ = sx[idx1];
|
||||||
|
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||||
|
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||||
|
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||||
|
const half *v_mix, const half *r_mix, const int outer_size,
|
||||||
|
const int inner_size, half *kx, half *vx, half *rx) {
|
||||||
|
// 256 is good enough on most GPUs
|
||||||
|
const int32_t BLOCK_SIZE = 256;
|
||||||
|
assert(inner_size % BLOCK_SIZE == 0);
|
||||||
|
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||||
|
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct InplaceSigmoid {
|
||||||
|
__device__ __forceinline__ half operator()(int i) const {
|
||||||
|
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||||
|
}
|
||||||
|
half *ptr;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct InplaceMul {
|
||||||
|
__device__ __forceinline__ half operator()(int i) const {
|
||||||
|
y[i] = __hmul(x[i], y[i]);
|
||||||
|
}
|
||||||
|
half *y;
|
||||||
|
half *x;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
Equivalent Python code:
|
||||||
|
|
||||||
|
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||||
|
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||||
|
kx = xx * k_mix + sx * (1 - k_mix)
|
||||||
|
vx = xx * v_mix + sx * (1 - v_mix)
|
||||||
|
rx = xx * r_mix + sx * (1 - r_mix)
|
||||||
|
|
||||||
|
r = torch.sigmoid(gemm(rx, rw))
|
||||||
|
k = gemm(kx, kw, output_dtype=torch.float32)
|
||||||
|
v = gemm(vx, vw, output_dtype=torch.float32)
|
||||||
|
|
||||||
|
T = x.shape[0]
|
||||||
|
for t in range(T):
|
||||||
|
kk = k[t]
|
||||||
|
vv = v[t]
|
||||||
|
ww = t_first + kk
|
||||||
|
p = torch.maximum(pp, ww)
|
||||||
|
e1 = torch.exp(pp - p)
|
||||||
|
e2 = torch.exp(ww - p)
|
||||||
|
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||||
|
ww = t_decay + pp
|
||||||
|
p = torch.maximum(ww, kk)
|
||||||
|
e1 = torch.exp(ww - p)
|
||||||
|
e2 = torch.exp(kk - p)
|
||||||
|
aa = e1 * aa + e2 * vv
|
||||||
|
bb = e1 * bb + e2
|
||||||
|
pp = p
|
||||||
|
out = gemm(r * sx, ow)
|
||||||
|
return x + out, xx[-1,:], aa, bb, pp
|
||||||
|
*/
|
||||||
|
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||||
|
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||||
|
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
||||||
|
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
|
||||||
|
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||||
|
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||||
|
char* buf_ptr = (char*)buf.data_ptr();
|
||||||
|
half* kx = (half*)buf_ptr;
|
||||||
|
half* vx = kx + x.numel();
|
||||||
|
half* rx = vx + x.numel();
|
||||||
|
half* wkv_y = rx + x.numel();
|
||||||
|
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||||
|
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
|
||||||
|
kx, vx, rx);
|
||||||
|
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
|
||||||
|
float* v = k + x.size(0) * kw.size(1);
|
||||||
|
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
|
||||||
|
|
||||||
|
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
|
||||||
|
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
|
||||||
|
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
|
||||||
|
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||||
|
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
|
||||||
|
data_ptr<float>(t_first), k, v, r,
|
||||||
|
wkv_y, data_ptr<float>(aa),
|
||||||
|
data_ptr<float>(bb), data_ptr<float>(pp));
|
||||||
|
element_wise(InplaceMul{wkv_y, r}, x.numel());
|
||||||
|
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
|
||||||
|
x_plus_out += x;
|
||||||
|
return xx;
|
||||||
|
}
|
21
backend-python/rwkv_pip/cuda/element_wise.h
vendored
Normal file
21
backend-python/rwkv_pip/cuda/element_wise.h
vendored
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
#include <cassert>
|
||||||
|
#include <cstddef>
|
||||||
|
#include <cstdint>
|
||||||
|
|
||||||
|
template <typename Func> __global__ void _element_wise(Func func, int n) {
|
||||||
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
|
||||||
|
i += blockDim.x * gridDim.x) {
|
||||||
|
func(i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
|
||||||
|
// (4096 in 7B model and 768 in 0.1B model),
|
||||||
|
// and is not faster than the plain float version.
|
||||||
|
template <typename Func>
|
||||||
|
void element_wise(Func func, int n) {
|
||||||
|
// 256 is good enough on most GPUs
|
||||||
|
const int32_t BLOCK_SIZE = 256;
|
||||||
|
assert(n % BLOCK_SIZE == 0);
|
||||||
|
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
|
||||||
|
}
|
165
backend-python/rwkv_pip/cuda/ffn.cu
vendored
Normal file
165
backend-python/rwkv_pip/cuda/ffn.cu
vendored
Normal file
@ -0,0 +1,165 @@
|
|||||||
|
#include "ATen/ATen.h"
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
#include <cuda_runtime.h>
|
||||||
|
#include <torch/extension.h>
|
||||||
|
|
||||||
|
#include "element_wise.h"
|
||||||
|
#include "util.h"
|
||||||
|
|
||||||
|
using torch::Tensor;
|
||||||
|
|
||||||
|
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
||||||
|
int ori_n, int ori_k, bool output_fp32);
|
||||||
|
|
||||||
|
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||||
|
const half *r_mix, const int outer_size,
|
||||||
|
const int inner_size, half *kx, half *rx) {
|
||||||
|
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||||
|
idx2 += blockDim.x * gridDim.x) {
|
||||||
|
half k_mix_ = k_mix[idx2];
|
||||||
|
half r_mix_ = r_mix[idx2];
|
||||||
|
for (int row = 0; row < outer_size; ++row) {
|
||||||
|
int idx1 = row * inner_size + idx2;
|
||||||
|
half xx_ = xx[idx1];
|
||||||
|
half sx_ = sx[idx1];
|
||||||
|
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||||
|
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||||
|
const half *r_mix, const int outer_size, const int inner_size,
|
||||||
|
half *kx, half *rx) {
|
||||||
|
// 256 is good enough on most GPUs
|
||||||
|
const int32_t BLOCK_SIZE = 256;
|
||||||
|
assert(inner_size % BLOCK_SIZE == 0);
|
||||||
|
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||||
|
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct InplaceSigmoid {
|
||||||
|
__device__ __forceinline__ void operator()(int i) const {
|
||||||
|
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||||
|
}
|
||||||
|
half *ptr;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct InplaceReLUAndSquare {
|
||||||
|
__device__ __forceinline__ void operator()(int i) const {
|
||||||
|
// __hmax is not defined in old cuda
|
||||||
|
if (__hgt(ptr[i], __float2half(0))) {
|
||||||
|
ptr[i] = __hmul(ptr[i], ptr[i]);
|
||||||
|
} else {
|
||||||
|
ptr[i] = __float2half(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
half *ptr;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct InplaceFma {
|
||||||
|
__device__ __forceinline__ void operator()(int i) const {
|
||||||
|
a[i] = __hfma(a[i], b[i], c[i]);
|
||||||
|
}
|
||||||
|
half *a;
|
||||||
|
const half *b;
|
||||||
|
const half *c;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
Equivalent Python code:
|
||||||
|
|
||||||
|
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||||
|
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||||
|
kx = xx * k_mix + sx * (1 - k_mix)
|
||||||
|
rx = xx * r_mix + sx * (1 - r_mix)
|
||||||
|
|
||||||
|
r = torch.sigmoid(gemm(rx, rw))
|
||||||
|
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||||
|
out = r * gemm(vx, vw)
|
||||||
|
return x + out, xx[-1,:]
|
||||||
|
*/
|
||||||
|
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||||
|
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||||
|
/* imm */ Tensor buf,
|
||||||
|
/* out */ Tensor x_plus_out) {
|
||||||
|
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||||
|
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||||
|
char *buf_ptr = (char *)buf.data_ptr();
|
||||||
|
half *kx = (half *)buf_ptr;
|
||||||
|
half *rx = kx + x.numel();
|
||||||
|
half *vx = rx + x.numel();
|
||||||
|
half *r = vx + x.size(0) * kw.size(1);
|
||||||
|
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||||
|
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
|
||||||
|
|
||||||
|
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
|
||||||
|
false);
|
||||||
|
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||||
|
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
|
||||||
|
false);
|
||||||
|
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
|
||||||
|
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
|
||||||
|
vw.size(1), vw.size(0), false);
|
||||||
|
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||||
|
x_plus_out.numel());
|
||||||
|
return xx;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct FfnOneMix {
|
||||||
|
__device__ __forceinline__ void operator()(int idx) {
|
||||||
|
half k_mix_ = k_mix[idx];
|
||||||
|
half r_mix_ = r_mix[idx];
|
||||||
|
half xx_ = xx[idx];
|
||||||
|
half sx_ = sx[idx];
|
||||||
|
kx[idx] = __hadd(__hmul(xx_, k_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||||
|
rx[idx] = __hadd(__hmul(xx_, r_mix_),
|
||||||
|
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||||
|
}
|
||||||
|
half *k_mix;
|
||||||
|
half *r_mix;
|
||||||
|
half *xx;
|
||||||
|
half *sx;
|
||||||
|
half *kx;
|
||||||
|
half *rx;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
Equivalent Python code:
|
||||||
|
|
||||||
|
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||||
|
kx = xx * k_mix + sx * (1 - k_mix)
|
||||||
|
rx = xx * r_mix + sx * (1 - r_mix)
|
||||||
|
|
||||||
|
r = torch.sigmoid(gemm(rx, rw))
|
||||||
|
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||||
|
out = r * gemm(vx, vw)
|
||||||
|
return x + out, xx
|
||||||
|
*/
|
||||||
|
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||||
|
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||||
|
/* imm */ Tensor buf,
|
||||||
|
/* out */ Tensor x_plus_out) {
|
||||||
|
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||||
|
char *buf_ptr = (char *)buf.data_ptr();
|
||||||
|
half *kx = (half *)buf_ptr;
|
||||||
|
half *rx = kx + x.numel();
|
||||||
|
half *vx = rx + x.numel();
|
||||||
|
half *r = vx + x.size(0) * kw.size(1);
|
||||||
|
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
|
||||||
|
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
|
||||||
|
x.numel());
|
||||||
|
// vector * matrix, so m = 1
|
||||||
|
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
|
||||||
|
element_wise(InplaceSigmoid{r}, rw.size(1));
|
||||||
|
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
|
||||||
|
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
|
||||||
|
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
|
||||||
|
vw.size(0), false);
|
||||||
|
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||||
|
x_plus_out.numel());
|
||||||
|
return xx;
|
||||||
|
}
|
86
backend-python/rwkv_pip/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
86
backend-python/rwkv_pip/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
#include <cublas_v2.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
#include <cuda_runtime.h>
|
||||||
|
#include <torch/extension.h>
|
||||||
|
|
||||||
|
#define CUBLAS_CHECK(condition) \
|
||||||
|
for (cublasStatus_t _cublas_check_status = (condition); \
|
||||||
|
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
|
||||||
|
throw std::runtime_error("cuBLAS error " + \
|
||||||
|
std::to_string(_cublas_check_status) + " at " + \
|
||||||
|
std::to_string(__LINE__));
|
||||||
|
|
||||||
|
#define CUDA_CHECK(condition) \
|
||||||
|
for (cudaError_t _cuda_check_status = (condition); \
|
||||||
|
_cuda_check_status != cudaSuccess;) \
|
||||||
|
throw std::runtime_error( \
|
||||||
|
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
|
||||||
|
" at " + std::to_string(__LINE__));
|
||||||
|
|
||||||
|
cublasHandle_t get_cublas_handle() {
|
||||||
|
static cublasHandle_t cublas_handle = []() {
|
||||||
|
cublasHandle_t handle = nullptr;
|
||||||
|
CUBLAS_CHECK(cublasCreate(&handle));
|
||||||
|
#if CUDA_VERSION < 11000
|
||||||
|
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
|
||||||
|
#else
|
||||||
|
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
|
||||||
|
#endif // CUDA_VERSION < 11000
|
||||||
|
return handle;
|
||||||
|
}();
|
||||||
|
return cublas_handle;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||||
|
The data of row-major, transposed matrix is exactly the same as the
|
||||||
|
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||||
|
*/
|
||||||
|
void gemm_fp16_cublas(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
|
||||||
|
const auto cuda_data_type = CUDA_R_16F;
|
||||||
|
const auto cuda_c_data_type =
|
||||||
|
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
|
||||||
|
const auto compute_type = CUDA_R_32F;
|
||||||
|
const float sp_alpha = 1.f;
|
||||||
|
// swap a and b, and use CUBLAS_OP_N. see the notes above
|
||||||
|
std::swap(a, b);
|
||||||
|
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||||
|
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||||
|
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
|
||||||
|
// negative axis is used because of the existence of batch matmul.
|
||||||
|
const int m = a.size(-1);
|
||||||
|
const int k = a.size(-2);
|
||||||
|
const int n = b.size(-2);
|
||||||
|
const int cublas_lda = m;
|
||||||
|
const int cublas_ldb = k;
|
||||||
|
const int cublas_ldc = m;
|
||||||
|
cublasHandle_t cublas_handle = get_cublas_handle();
|
||||||
|
|
||||||
|
#if CUDA_VERSION >= 11000
|
||||||
|
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||||
|
#else
|
||||||
|
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||||
|
#endif
|
||||||
|
const float sp_beta = 0.f;
|
||||||
|
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
|
||||||
|
CUBLAS_CHECK(cublasGemmEx(
|
||||||
|
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
|
||||||
|
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
|
||||||
|
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
|
||||||
|
compute_type, algo));
|
||||||
|
} else {
|
||||||
|
// batch matmul
|
||||||
|
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
|
||||||
|
|
||||||
|
const long long int cublas_stride_a = m * k;
|
||||||
|
const long long int cublas_stride_b = k * n;
|
||||||
|
const long long int cublas_stride_c = m * n;
|
||||||
|
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
|
||||||
|
cublas_handle, cublas_trans_a, cublas_trans_b, m,
|
||||||
|
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
|
||||||
|
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
|
||||||
|
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
|
||||||
|
a.size(0), compute_type, algo));
|
||||||
|
}
|
||||||
|
}
|
246
backend-python/rwkv_pip/cuda/operators.cu
vendored
Normal file
246
backend-python/rwkv_pip/cuda/operators.cu
vendored
Normal file
@ -0,0 +1,246 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <assert.h>
|
||||||
|
#include "ATen/ATen.h"
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
#define MIN_VALUE (-1e38)
|
||||||
|
typedef at::Half fp16;
|
||||||
|
__half *cast(fp16 *ptr) {
|
||||||
|
return reinterpret_cast<__half *>(ptr);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename F>
|
||||||
|
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
|
||||||
|
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||||
|
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||||
|
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
const int _b = idx / C;
|
||||||
|
const int _c = idx % C;
|
||||||
|
const int _offset = _b * T * C + _c;
|
||||||
|
const int _state_offset = _b * C + _c;
|
||||||
|
|
||||||
|
float u = _u[_c];
|
||||||
|
float w = _w[_c];
|
||||||
|
const F *__restrict__ const k = _k + _offset;
|
||||||
|
const F *__restrict__ const v = _v + _offset;
|
||||||
|
F *__restrict__ const y = _y + _offset;
|
||||||
|
|
||||||
|
float aa = _aa[_state_offset];
|
||||||
|
float bb = _bb[_state_offset];
|
||||||
|
float pp = _pp[_state_offset];
|
||||||
|
for (int i = 0; i < T; i++) {
|
||||||
|
const int ii = i * C;
|
||||||
|
const float kk = float(k[ii]);
|
||||||
|
const float vv = float(v[ii]);
|
||||||
|
float ww = u + kk;
|
||||||
|
float p = max(pp, ww);
|
||||||
|
float e1 = exp(pp - p);
|
||||||
|
float e2 = exp(ww - p);
|
||||||
|
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||||
|
ww = w + pp;
|
||||||
|
p = max(ww, kk);
|
||||||
|
e1 = exp(ww - p);
|
||||||
|
e2 = exp(kk - p);
|
||||||
|
aa = e1 * aa + e2 * vv;
|
||||||
|
bb = e1 * bb + e2;
|
||||||
|
pp = p;
|
||||||
|
}
|
||||||
|
_aa[_state_offset] = aa;
|
||||||
|
_bb[_state_offset] = bb;
|
||||||
|
_pp[_state_offset] = pp;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename F>
|
||||||
|
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
|
||||||
|
dim3 threadsPerBlock( min(C, 32) );
|
||||||
|
assert(B * C % threadsPerBlock.x == 0);
|
||||||
|
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||||
|
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
|
||||||
|
}
|
||||||
|
|
||||||
|
template void cuda_wkv_forward<fp16>(
|
||||||
|
int B, int T, int C,
|
||||||
|
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
|
||||||
|
float *aa, float *bb, float *pp);
|
||||||
|
template void cuda_wkv_forward<float>(
|
||||||
|
int B, int T, int C,
|
||||||
|
float *w, float *u, float *k, float *v, float *y,
|
||||||
|
float *aa, float *bb, float *pp);
|
||||||
|
|
||||||
|
__global__ void kernel_mm_seq_fp32i8(
|
||||||
|
const int B, const int N, const int M,
|
||||||
|
const float *__restrict__ const x, const int x_stride,
|
||||||
|
const uint8_t *__restrict__ const w, const int w_stride,
|
||||||
|
const float *__restrict__ const mx,
|
||||||
|
const float *__restrict__ const rx,
|
||||||
|
const float *__restrict__ const my,
|
||||||
|
const float *__restrict__ const ry,
|
||||||
|
float *__restrict__ const y, const int y_stride) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||||
|
|
||||||
|
if (i < B && k < M) {
|
||||||
|
float y_local = 0;
|
||||||
|
for (int j = 0; j < N; ++j) {
|
||||||
|
y_local += x[i * x_stride + j] * (
|
||||||
|
(float(w[j * w_stride + k]) + 0.5f)
|
||||||
|
* rx[k] * ry[j] + mx[k] + my[j]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
y[i * y_stride + k] = y_local;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename F>
|
||||||
|
void cuda_mm8_seq(int B, int N, int M,
|
||||||
|
F *x, int x_stride,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
F *mx, F *rx,
|
||||||
|
F *my, F *ry,
|
||||||
|
F *y, int y_stride);
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void cuda_mm8_seq<float>(int B, int N, int M,
|
||||||
|
float *x, int x_stride,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
float *mx, float *rx,
|
||||||
|
float *my, float *ry,
|
||||||
|
float *y, int y_stride) {
|
||||||
|
dim3 blockSize(1, 128);
|
||||||
|
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||||
|
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
|
||||||
|
B, N, M, x, x_stride, w, w_stride,
|
||||||
|
mx, rx, my, ry, y, y_stride);
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ void kernel_mm_seq_fp16i8(
|
||||||
|
const int B, const int N, const int M,
|
||||||
|
const __half *__restrict__ const x, const int x_stride,
|
||||||
|
const uint8_t *__restrict__ const w, const int w_stride,
|
||||||
|
const __half *__restrict__ const mx,
|
||||||
|
const __half *__restrict__ const rx,
|
||||||
|
const __half *__restrict__ const my,
|
||||||
|
const __half *__restrict__ const ry,
|
||||||
|
__half *__restrict__ const y, const int y_stride) {
|
||||||
|
|
||||||
|
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||||
|
|
||||||
|
if (i < B && k < M) {
|
||||||
|
float y_local = 0;
|
||||||
|
for (int j = 0; j < N; ++j) {
|
||||||
|
y_local += __half2float(x[i * x_stride + j]) * (
|
||||||
|
(float(w[j * w_stride + k]) + 0.5f)
|
||||||
|
* __half2float(rx[k]) * __half2float(ry[j])
|
||||||
|
+ __half2float(mx[k]) + __half2float(my[j])
|
||||||
|
);
|
||||||
|
}
|
||||||
|
y[i * y_stride + k] = __float2half(y_local);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void cuda_mm8_seq<fp16>(int B, int N, int M,
|
||||||
|
fp16 *x, int x_stride,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
fp16 *mx, fp16 *rx,
|
||||||
|
fp16 *my, fp16 *ry,
|
||||||
|
fp16 *y, int y_stride) {
|
||||||
|
dim3 blockSize(1, 128);
|
||||||
|
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||||
|
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
|
||||||
|
B, N, M, cast(x), x_stride, w, w_stride,
|
||||||
|
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define MM8_ONE_JSPLIT 24
|
||||||
|
#define MM8_ONE_TILE 1024
|
||||||
|
|
||||||
|
__global__ void kernel_mm_one_fp32i8(
|
||||||
|
const int N, const int M,
|
||||||
|
const float *__restrict__ const x,
|
||||||
|
const uint8_t *__restrict__ const w, const int w_stride,
|
||||||
|
const float *__restrict__ const mx,
|
||||||
|
const float *__restrict__ const rx,
|
||||||
|
const float *__restrict__ const my,
|
||||||
|
const float *__restrict__ const ry,
|
||||||
|
float *__restrict__ const y) {
|
||||||
|
|
||||||
|
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||||
|
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||||
|
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||||
|
|
||||||
|
if (k < M) {
|
||||||
|
float y_local = 0;
|
||||||
|
for (int j = j0; j < j1; ++j) {
|
||||||
|
y_local += x[j] * (
|
||||||
|
(float(w[j * w_stride + k]) + 0.5f)
|
||||||
|
* rx[k] * ry[j] + mx[k] + my[j]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
atomicAdd(&y[k], y_local);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename F>
|
||||||
|
void cuda_mm8_one(int N, int M,
|
||||||
|
F *x,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
F *mx, F *rx,
|
||||||
|
F *my, F *ry,
|
||||||
|
float *y);
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void cuda_mm8_one<float>(int N, int M,
|
||||||
|
float *x,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
float *mx, float *rx,
|
||||||
|
float *my, float *ry,
|
||||||
|
float *y) {
|
||||||
|
dim3 blockSize(1, MM8_ONE_TILE);
|
||||||
|
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||||
|
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
|
||||||
|
N, M, x, w, w_stride,
|
||||||
|
mx, rx, my, ry, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ void kernel_mm_one_fp16i8(
|
||||||
|
const int N, const int M,
|
||||||
|
const __half *__restrict__ const x,
|
||||||
|
const uint8_t *__restrict__ const w, const int w_stride,
|
||||||
|
const __half *__restrict__ const mx,
|
||||||
|
const __half *__restrict__ const rx,
|
||||||
|
const __half *__restrict__ const my,
|
||||||
|
const __half *__restrict__ const ry,
|
||||||
|
float *__restrict__ const y) {
|
||||||
|
|
||||||
|
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||||
|
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||||
|
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||||
|
|
||||||
|
if (k < M) {
|
||||||
|
float y_local = 0;
|
||||||
|
for (int j = j0; j < j1; ++j) {
|
||||||
|
y_local += __half2float(x[j]) * (
|
||||||
|
(float(w[j * w_stride + k]) + 0.5f)
|
||||||
|
* __half2float(rx[k]) * __half2float(ry[j])
|
||||||
|
+ __half2float(mx[k]) + __half2float(my[j])
|
||||||
|
);
|
||||||
|
}
|
||||||
|
atomicAdd(&y[k], y_local);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void cuda_mm8_one<fp16>(int N, int M,
|
||||||
|
fp16 *x,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
fp16 *mx, fp16 *rx,
|
||||||
|
fp16 *my, fp16 *ry,
|
||||||
|
float *y) {
|
||||||
|
dim3 blockSize(1, MM8_ONE_TILE);
|
||||||
|
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||||
|
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
|
||||||
|
N, M, cast(x), w, w_stride,
|
||||||
|
cast(mx), cast(rx), cast(my), cast(ry), y);
|
||||||
|
}
|
88
backend-python/rwkv_pip/cuda/rwkv5.cu
vendored
Normal file
88
backend-python/rwkv_pip/cuda/rwkv5.cu
vendored
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <assert.h>
|
||||||
|
#include "ATen/ATen.h"
|
||||||
|
typedef at::BFloat16 bf16;
|
||||||
|
typedef at::Half fp16;
|
||||||
|
typedef float fp32;
|
||||||
|
|
||||||
|
template <typename F>
|
||||||
|
__global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
|
||||||
|
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
|
||||||
|
F *__restrict__ const _y)
|
||||||
|
{
|
||||||
|
const int b = blockIdx.x / H;
|
||||||
|
const int h = blockIdx.x % H;
|
||||||
|
const int i = threadIdx.x;
|
||||||
|
_w += h*_N_;
|
||||||
|
_u += h*_N_;
|
||||||
|
_state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
|
||||||
|
|
||||||
|
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
||||||
|
|
||||||
|
float state[_N_];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < _N_; j++)
|
||||||
|
state[j] = _state[j];
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
u[i] = float(_u[i]);
|
||||||
|
w[i] = _w[i];
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
||||||
|
{
|
||||||
|
__syncthreads();
|
||||||
|
r[i] = float(_r[t]);
|
||||||
|
k[i] = float(_k[t]);
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
const float v = float(_v[t]);
|
||||||
|
float y = 0;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < _N_; j+=4)
|
||||||
|
{
|
||||||
|
const float4& r_ = (float4&)(r[j]);
|
||||||
|
const float4& k_ = (float4&)(k[j]);
|
||||||
|
const float4& w_ = (float4&)(w[j]);
|
||||||
|
const float4& u_ = (float4&)(u[j]);
|
||||||
|
float4& s = (float4&)(state[j]);
|
||||||
|
float4 x;
|
||||||
|
|
||||||
|
x.x = k_.x * v;
|
||||||
|
x.y = k_.y * v;
|
||||||
|
x.z = k_.z * v;
|
||||||
|
x.w = k_.w * v;
|
||||||
|
|
||||||
|
y += r_.x * (u_.x * x.x + s.x);
|
||||||
|
y += r_.y * (u_.y * x.y + s.y);
|
||||||
|
y += r_.z * (u_.z * x.z + s.z);
|
||||||
|
y += r_.w * (u_.w * x.w + s.w);
|
||||||
|
|
||||||
|
s.x = s.x * w_.x + x.x;
|
||||||
|
s.y = s.y * w_.y + x.y;
|
||||||
|
s.z = s.z * w_.z + x.z;
|
||||||
|
s.w = s.w * w_.w + x.w;
|
||||||
|
}
|
||||||
|
_y[t] = F(y);
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < _N_; j++)
|
||||||
|
_state[j] = state[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
|
||||||
|
{
|
||||||
|
assert(H*_N_ == C);
|
||||||
|
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
||||||
|
}
|
||||||
|
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
|
||||||
|
{
|
||||||
|
assert(H*_N_ == C);
|
||||||
|
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
||||||
|
}
|
||||||
|
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
|
||||||
|
{
|
||||||
|
assert(H*_N_ == C);
|
||||||
|
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
||||||
|
}
|
30
backend-python/rwkv_pip/cuda/rwkv5_op.cpp
vendored
Normal file
30
backend-python/rwkv_pip/cuda/rwkv5_op.cpp
vendored
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
#include <torch/extension.h>
|
||||||
|
#include "ATen/ATen.h"
|
||||||
|
typedef at::BFloat16 bf16;
|
||||||
|
typedef at::Half fp16;
|
||||||
|
typedef float fp32;
|
||||||
|
|
||||||
|
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
|
||||||
|
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
|
||||||
|
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
|
||||||
|
|
||||||
|
void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||||
|
cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||||
|
}
|
||||||
|
void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||||
|
cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
|
||||||
|
}
|
||||||
|
void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||||
|
cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
|
||||||
|
}
|
||||||
|
|
||||||
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||||
|
m.def("forward_bf16", &forward_bf16, "rwkv5 forward_bf16");
|
||||||
|
m.def("forward_fp16", &forward_fp16, "rwkv5 forward_fp16");
|
||||||
|
m.def("forward_fp32", &forward_fp32, "rwkv5 forward_fp32");
|
||||||
|
}
|
||||||
|
TORCH_LIBRARY(rwkv5, m) {
|
||||||
|
m.def("forward_bf16", forward_bf16);
|
||||||
|
m.def("forward_fp16", forward_fp16);
|
||||||
|
m.def("forward_fp32", forward_fp32);
|
||||||
|
}
|
7
backend-python/rwkv_pip/cuda/util.h
vendored
Normal file
7
backend-python/rwkv_pip/cuda/util.h
vendored
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
#include "ATen/ATen.h"
|
||||||
|
#include <cuda_fp16.h>
|
||||||
|
|
||||||
|
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
|
||||||
|
template <> inline half *data_ptr(torch::Tensor x) {
|
||||||
|
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
|
||||||
|
}
|
141
backend-python/rwkv_pip/cuda/wrapper.cpp
vendored
Normal file
141
backend-python/rwkv_pip/cuda/wrapper.cpp
vendored
Normal file
@ -0,0 +1,141 @@
|
|||||||
|
#include <torch/extension.h>
|
||||||
|
#include "ATen/ATen.h"
|
||||||
|
#include <iostream>
|
||||||
|
#include <c10/cuda/CUDAGuard.h>
|
||||||
|
|
||||||
|
typedef at::Half fp16;
|
||||||
|
|
||||||
|
template <typename F>
|
||||||
|
void cuda_wkv_forward(int B, int T, int C,
|
||||||
|
float *w, float *u, F *k, F *v, F *y,
|
||||||
|
float *aa, float *bb, float *pp);
|
||||||
|
template <typename F>
|
||||||
|
void cuda_mm8_seq(int B, int N, int M,
|
||||||
|
F *x, int x_stride,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
F *mx, F *rx,
|
||||||
|
F *my, F *ry,
|
||||||
|
F *y, int y_stride);
|
||||||
|
template <typename F>
|
||||||
|
void cuda_mm8_one(int N, int M,
|
||||||
|
F *x,
|
||||||
|
uint8_t *w, int w_stride,
|
||||||
|
F *mx, F *rx,
|
||||||
|
F *my, F *ry,
|
||||||
|
float *y);
|
||||||
|
|
||||||
|
void wkv_forward(int64_t B, int64_t T, int64_t C,
|
||||||
|
torch::Tensor &w, torch::Tensor &u,
|
||||||
|
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
||||||
|
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
|
||||||
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||||
|
switch (k.scalar_type()) {
|
||||||
|
case c10::ScalarType::Half:
|
||||||
|
cuda_wkv_forward(B, T, C,
|
||||||
|
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||||
|
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
|
||||||
|
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||||
|
break;
|
||||||
|
case c10::ScalarType::Float:
|
||||||
|
cuda_wkv_forward(B, T, C,
|
||||||
|
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||||
|
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
|
||||||
|
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
assert(false && "Only FP16 and FP32 are currently supported");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void mm8_seq(int64_t B, int64_t N, int64_t M,
|
||||||
|
torch::Tensor &x, torch::Tensor &w,
|
||||||
|
torch::Tensor &mx, torch::Tensor &rx,
|
||||||
|
torch::Tensor &my, torch::Tensor &ry,
|
||||||
|
torch::Tensor &y) {
|
||||||
|
assert(x.stride(1) == 1);
|
||||||
|
assert(w.stride(1) == 1);
|
||||||
|
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||||
|
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||||
|
assert(y.stride(1) == 1);
|
||||||
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||||
|
switch (x.scalar_type()) {
|
||||||
|
case c10::ScalarType::Half:
|
||||||
|
cuda_mm8_seq(
|
||||||
|
B, N, M,
|
||||||
|
x.data_ptr<fp16>(), x.stride(0),
|
||||||
|
w.data_ptr<uint8_t>(), w.stride(0),
|
||||||
|
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||||
|
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||||
|
y.data_ptr<fp16>(), y.stride(0));
|
||||||
|
break;
|
||||||
|
case c10::ScalarType::Float:
|
||||||
|
cuda_mm8_seq(
|
||||||
|
B, N, M,
|
||||||
|
x.data_ptr<float>(), x.stride(0),
|
||||||
|
w.data_ptr<uint8_t>(), w.stride(0),
|
||||||
|
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||||
|
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||||
|
y.data_ptr<float>(), y.stride(0));
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
assert(false && "Only FP16 and FP32 are currently supported");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void mm8_one(int64_t N, int64_t M,
|
||||||
|
torch::Tensor &x, torch::Tensor &w,
|
||||||
|
torch::Tensor &mx, torch::Tensor &rx,
|
||||||
|
torch::Tensor &my, torch::Tensor &ry,
|
||||||
|
torch::Tensor &y) {
|
||||||
|
assert(x.stride(0) == 1);
|
||||||
|
assert(w.stride(1) == 1);
|
||||||
|
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||||
|
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||||
|
assert(y.stride(0) == 1);
|
||||||
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||||
|
switch (x.scalar_type()) {
|
||||||
|
case c10::ScalarType::Half:
|
||||||
|
cuda_mm8_one(
|
||||||
|
N, M,
|
||||||
|
x.data_ptr<fp16>(),
|
||||||
|
w.data_ptr<uint8_t>(), w.stride(0),
|
||||||
|
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||||
|
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||||
|
y.data_ptr<float>());
|
||||||
|
break;
|
||||||
|
case c10::ScalarType::Float:
|
||||||
|
cuda_mm8_one(
|
||||||
|
N, M,
|
||||||
|
x.data_ptr<float>(),
|
||||||
|
w.data_ptr<uint8_t>(), w.stride(0),
|
||||||
|
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||||
|
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||||
|
y.data_ptr<float>());
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
assert(false && "Only FP16 and FP32 are currently supported");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
using torch::Tensor;
|
||||||
|
|
||||||
|
#ifndef DISABLE_CUBLAS_GEMM
|
||||||
|
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||||
|
m.def("wkv_forward", &wkv_forward, "wkv forward");
|
||||||
|
m.def("mm8_seq", &mm8_seq, "mm8 seq");
|
||||||
|
m.def("mm8_one", &mm8_one, "mm8 one");
|
||||||
|
#ifndef DISABLE_CUBLAS_GEMM
|
||||||
|
m.def("gemm_fp16_cublas", &gemm_fp16_cublas, "gemv fp16 cublas");
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
TORCH_LIBRARY(rwkv, m) {
|
||||||
|
m.def("wkv_forward", wkv_forward);
|
||||||
|
m.def("mm8_seq", mm8_seq);
|
||||||
|
m.def("mm8_one", mm8_one);
|
||||||
|
#ifndef DISABLE_CUBLAS_GEMM
|
||||||
|
m.def("gemm_fp16_cublas", gemm_fp16_cublas);
|
||||||
|
#endif
|
||||||
|
}
|
1827
backend-python/rwkv_pip/model.py
vendored
Normal file
1827
backend-python/rwkv_pip/model.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
9
backend-python/rwkv_pip/utils.py
vendored
9
backend-python/rwkv_pip/utils.py
vendored
@ -16,6 +16,7 @@ class PIPELINE_ARGS:
|
|||||||
top_k=0,
|
top_k=0,
|
||||||
alpha_frequency=0.2,
|
alpha_frequency=0.2,
|
||||||
alpha_presence=0.2,
|
alpha_presence=0.2,
|
||||||
|
alpha_decay=0.996,
|
||||||
token_ban=[],
|
token_ban=[],
|
||||||
token_stop=[],
|
token_stop=[],
|
||||||
chunk_len=256,
|
chunk_len=256,
|
||||||
@ -25,6 +26,7 @@ class PIPELINE_ARGS:
|
|||||||
self.top_k = top_k
|
self.top_k = top_k
|
||||||
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
|
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
|
||||||
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
|
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
|
||||||
|
self.alpha_decay = alpha_decay # gradually decay the penalty
|
||||||
self.token_ban = token_ban # ban the generation of some tokens
|
self.token_ban = token_ban # ban the generation of some tokens
|
||||||
self.token_stop = token_stop # stop generation whenever you see any token here
|
self.token_stop = token_stop # stop generation whenever you see any token here
|
||||||
self.chunk_len = (
|
self.chunk_len = (
|
||||||
@ -84,7 +86,7 @@ class PIPELINE:
|
|||||||
sorted_ids = np.argsort(probs)
|
sorted_ids = np.argsort(probs)
|
||||||
sorted_probs = probs[sorted_ids][::-1]
|
sorted_probs = probs[sorted_ids][::-1]
|
||||||
cumulative_probs = np.cumsum(sorted_probs)
|
cumulative_probs = np.cumsum(sorted_probs)
|
||||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
|
||||||
probs[probs < cutoff] = 0
|
probs[probs < cutoff] = 0
|
||||||
if top_k < len(probs) and top_k > 0:
|
if top_k < len(probs) and top_k > 0:
|
||||||
probs[sorted_ids[:-top_k]] = 0
|
probs[sorted_ids[:-top_k]] = 0
|
||||||
@ -98,7 +100,7 @@ class PIPELINE:
|
|||||||
sorted_probs = probs[sorted_ids]
|
sorted_probs = probs[sorted_ids]
|
||||||
sorted_probs = torch.flip(sorted_probs, dims=(0,))
|
sorted_probs = torch.flip(sorted_probs, dims=(0,))
|
||||||
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
|
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
|
||||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
|
||||||
probs[probs < cutoff] = 0
|
probs[probs < cutoff] = 0
|
||||||
if top_k < len(probs) and top_k > 0:
|
if top_k < len(probs) and top_k > 0:
|
||||||
probs[sorted_ids[:-top_k]] = 0
|
probs[sorted_ids[:-top_k]] = 0
|
||||||
@ -133,10 +135,13 @@ class PIPELINE:
|
|||||||
if token in args.token_stop:
|
if token in args.token_stop:
|
||||||
break
|
break
|
||||||
all_tokens += [token]
|
all_tokens += [token]
|
||||||
|
for xxx in occurrence:
|
||||||
|
occurrence[xxx] *= args.alpha_decay
|
||||||
if token not in occurrence:
|
if token not in occurrence:
|
||||||
occurrence[token] = 1
|
occurrence[token] = 1
|
||||||
else:
|
else:
|
||||||
occurrence[token] += 1
|
occurrence[token] += 1
|
||||||
|
# print(occurrence) # debug
|
||||||
|
|
||||||
# output
|
# output
|
||||||
tmp = self.decode(all_tokens[out_last:])
|
tmp = self.decode(all_tokens[out_last:])
|
||||||
|
@ -36,7 +36,7 @@ class AbstractRWKV(ABC):
|
|||||||
RWKV as Model,
|
RWKV as Model,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
from rwkv.model import (
|
from rwkv_pip.model import (
|
||||||
RWKV as Model,
|
RWKV as Model,
|
||||||
)
|
)
|
||||||
from rwkv_pip.utils import PIPELINE
|
from rwkv_pip.utils import PIPELINE
|
||||||
|
BIN
backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd
vendored
BIN
backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd
vendored
Binary file not shown.
BIN
backend-python/wkv_cuda_utils/wkv_cuda40.pyd
vendored
BIN
backend-python/wkv_cuda_utils/wkv_cuda40.pyd
vendored
Binary file not shown.
734
backend-python/wkv_cuda_utils/wkv_cuda_model.py
vendored
734
backend-python/wkv_cuda_utils/wkv_cuda_model.py
vendored
@ -1,734 +0,0 @@
|
|||||||
########################################################################################################
|
|
||||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
import types, gc, os, time, re
|
|
||||||
import torch
|
|
||||||
from torch.nn import functional as F
|
|
||||||
torch.backends.cudnn.benchmark = True
|
|
||||||
torch.backends.cudnn.allow_tf32 = True
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
|
||||||
current_path = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
|
|
||||||
# https://zhuanlan.zhihu.com/p/612879065
|
|
||||||
def LoadPreCompileLibrary(file):
|
|
||||||
import importlib
|
|
||||||
import os
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# load the custom_op_library and register the custom ops
|
|
||||||
lib_dir = os.path.dirname(__file__)
|
|
||||||
if os.name == "nt":
|
|
||||||
# Register the main torchvision library location on the default DLL path
|
|
||||||
import ctypes
|
|
||||||
import sys
|
|
||||||
|
|
||||||
kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
|
|
||||||
with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
|
|
||||||
prev_error_mode = kernel32.SetErrorMode(0x0001)
|
|
||||||
|
|
||||||
if with_load_library_flags:
|
|
||||||
kernel32.AddDllDirectory.restype = ctypes.c_void_p
|
|
||||||
|
|
||||||
if sys.version_info >= (3, 8):
|
|
||||||
os.add_dll_directory(lib_dir)
|
|
||||||
elif with_load_library_flags:
|
|
||||||
res = kernel32.AddDllDirectory(lib_dir)
|
|
||||||
if res is None:
|
|
||||||
err = ctypes.WinError(ctypes.get_last_error())
|
|
||||||
err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
|
|
||||||
raise ValueError(err)
|
|
||||||
|
|
||||||
kernel32.SetErrorMode(prev_error_mode)
|
|
||||||
|
|
||||||
loader_details = (
|
|
||||||
importlib.machinery.ExtensionFileLoader,
|
|
||||||
importlib.machinery.EXTENSION_SUFFIXES,
|
|
||||||
)
|
|
||||||
|
|
||||||
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
|
|
||||||
ext_specs = extfinder.find_spec(file)
|
|
||||||
if ext_specs is None:
|
|
||||||
return False
|
|
||||||
|
|
||||||
try:
|
|
||||||
torch.ops.load_library(ext_specs.origin)
|
|
||||||
except OSError as exc:
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
if os.environ.get('RWKV_JIT_ON') != '0':
|
|
||||||
os.environ["RWKV_JIT_ON"] = '1'
|
|
||||||
MyModule = torch.jit.ScriptModule
|
|
||||||
MyFunction = torch.jit.script_method
|
|
||||||
MyStatic = torch.jit.script
|
|
||||||
else:
|
|
||||||
MyModule = torch.nn.Module
|
|
||||||
def __nop(ob):
|
|
||||||
return ob
|
|
||||||
MyFunction = __nop
|
|
||||||
MyStatic = __nop
|
|
||||||
|
|
||||||
if os.environ.get('RWKV_CUDA_ON') == '1':
|
|
||||||
if LoadPreCompileLibrary('wkv_cuda') is False:
|
|
||||||
from torch.utils.cpp_extension import load
|
|
||||||
load(
|
|
||||||
name=f"wkv_cuda",
|
|
||||||
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
|
|
||||||
verbose=True,
|
|
||||||
extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"],
|
|
||||||
is_python_module=False)
|
|
||||||
|
|
||||||
@MyStatic
|
|
||||||
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
|
|
||||||
assert 1 * C % min(C, 32) == 0
|
|
||||||
assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
|
|
||||||
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
|
|
||||||
w = w.contiguous()
|
|
||||||
u = u.contiguous()
|
|
||||||
k = k.contiguous()
|
|
||||||
v = v.contiguous()
|
|
||||||
y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
|
|
||||||
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
|
|
||||||
return y, aa, bb, pp
|
|
||||||
@MyStatic
|
|
||||||
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
|
|
||||||
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
|
||||||
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
|
||||||
assert w.dtype == torch.uint8
|
|
||||||
assert x.shape == [B, N]
|
|
||||||
assert w.shape == [N, M]
|
|
||||||
assert rx.shape == mx.shape == [M]
|
|
||||||
assert ry.shape == my.shape == [N, 1]
|
|
||||||
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
|
|
||||||
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
|
|
||||||
return y
|
|
||||||
@MyStatic
|
|
||||||
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
|
|
||||||
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
|
||||||
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
|
||||||
assert w.dtype == torch.uint8
|
|
||||||
assert x.shape == [N]
|
|
||||||
assert w.shape == [N, M]
|
|
||||||
assert rx.shape == mx.shape == [M]
|
|
||||||
assert ry.shape == my.shape == [N, 1]
|
|
||||||
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
|
|
||||||
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
|
|
||||||
return y.to(dtype=x.dtype)
|
|
||||||
else:
|
|
||||||
os.environ["RWKV_CUDA_ON"] = '0'
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
class RWKV(MyModule):
|
|
||||||
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
|
|
||||||
super().__init__()
|
|
||||||
if verbose:
|
|
||||||
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
|
|
||||||
else:
|
|
||||||
prxxx = lambda *args, **kwargs: None
|
|
||||||
|
|
||||||
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
|
|
||||||
if not re.match(STRATEGY_REGEX, strategy):
|
|
||||||
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
|
|
||||||
|
|
||||||
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
|
|
||||||
self.args = types.SimpleNamespace()
|
|
||||||
args = self.args
|
|
||||||
args.MODEL_NAME = model
|
|
||||||
args.strategy_string = strategy
|
|
||||||
|
|
||||||
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
|
|
||||||
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
|
|
||||||
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
|
|
||||||
|
|
||||||
args.MODEL_NAME = args.MODEL_NAME.strip()
|
|
||||||
if not args.MODEL_NAME.endswith('.pth'):
|
|
||||||
args.MODEL_NAME += '.pth'
|
|
||||||
prxxx(f'Loading {args.MODEL_NAME} ...')
|
|
||||||
with torch.no_grad():
|
|
||||||
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
|
|
||||||
gc.collect()
|
|
||||||
w = self.w
|
|
||||||
|
|
||||||
ALREADY_CONVERTED = False
|
|
||||||
if '_strategy' in w:
|
|
||||||
ALREADY_CONVERTED = True
|
|
||||||
assert convert_and_save_and_exit == None # you should only convert a raw model
|
|
||||||
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
|
|
||||||
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
|
|
||||||
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
|
|
||||||
assert w['_rescale_layer'] == self.RESCALE_LAYER
|
|
||||||
del w['_strategy']
|
|
||||||
del w['_version']
|
|
||||||
del w['_rescale_layer']
|
|
||||||
|
|
||||||
args.n_embd = w['emb.weight'].shape[1]
|
|
||||||
args.n_layer = 0
|
|
||||||
keys = list(w.keys())
|
|
||||||
for x in keys:
|
|
||||||
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
|
||||||
args.n_layer = max(args.n_layer, layer_id+1)
|
|
||||||
|
|
||||||
####################### Compute strategy
|
|
||||||
|
|
||||||
s = [x.strip().split(' ') for x in strategy.split('->')]
|
|
||||||
plan = [0] * len(s)
|
|
||||||
stream_i = -1
|
|
||||||
stream_count = 0
|
|
||||||
to_allocate = args.n_layer + 1
|
|
||||||
allocated = 0
|
|
||||||
free_slots = 0
|
|
||||||
for i in range(len(s)):
|
|
||||||
si = s[i]
|
|
||||||
si1 = si[1]
|
|
||||||
if si1.startswith('fp32'): si[1] = [torch.float]
|
|
||||||
elif si1.startswith('fp16'): si[1] = [torch.float16]
|
|
||||||
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
|
|
||||||
if si1.endswith('i8'): si[1] += [torch.uint8]
|
|
||||||
else: si[1] += [si[1][0]]
|
|
||||||
if len(si) > 2:
|
|
||||||
ss = si[2]
|
|
||||||
assert ss.startswith('*')
|
|
||||||
if ss.endswith('+'):
|
|
||||||
plan[i] = int(ss[1:-1])
|
|
||||||
stream_i = i
|
|
||||||
else:
|
|
||||||
plan[i] = int(ss[1:])
|
|
||||||
allocated += plan[i]
|
|
||||||
if allocated >= to_allocate:
|
|
||||||
plan[i] += to_allocate - allocated
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
free_slots += 1
|
|
||||||
if stream_i < 0:
|
|
||||||
if free_slots > 0 and to_allocate > allocated:
|
|
||||||
for i in range(len(s)):
|
|
||||||
if plan[i] == 0:
|
|
||||||
plan[i] = (to_allocate - allocated) // free_slots
|
|
||||||
allocated += plan[i]
|
|
||||||
free_slots -= 1
|
|
||||||
if to_allocate > allocated:
|
|
||||||
plan[len(s)-1] += to_allocate - allocated
|
|
||||||
else:
|
|
||||||
if to_allocate > allocated:
|
|
||||||
stream_count = to_allocate - allocated
|
|
||||||
plan[stream_i] += stream_count
|
|
||||||
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
|
|
||||||
for i in range(len(s)):
|
|
||||||
ss = s[i]
|
|
||||||
if i != stream_i:
|
|
||||||
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
|
|
||||||
else:
|
|
||||||
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
|
|
||||||
plan[i] += (0 if i == 0 else plan[i-1])
|
|
||||||
self.strategy = [None] * (args.n_layer + 1)
|
|
||||||
strategy = self.strategy
|
|
||||||
for n in range(args.n_layer + 1):
|
|
||||||
for i in range(len(s)):
|
|
||||||
if n < plan[i]:
|
|
||||||
strategy[n] = types.SimpleNamespace()
|
|
||||||
strategy[n].device = s[i][0]
|
|
||||||
strategy[n].atype = s[i][1][0]
|
|
||||||
strategy[n].wtype = s[i][1][1]
|
|
||||||
strategy[n].stream = False
|
|
||||||
if i == stream_i and n >= (plan[i] - stream_count):
|
|
||||||
strategy[n].stream = True
|
|
||||||
break
|
|
||||||
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
|
|
||||||
prxxx()
|
|
||||||
|
|
||||||
####################### Load weights to self.w
|
|
||||||
|
|
||||||
if not ALREADY_CONVERTED:
|
|
||||||
try: # precompute embedding
|
|
||||||
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
|
|
||||||
except:
|
|
||||||
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
|
|
||||||
del w['blocks.0.ln0.weight']
|
|
||||||
del w['blocks.0.ln0.bias']
|
|
||||||
|
|
||||||
print_need_newline = False
|
|
||||||
keys = list(w.keys())
|
|
||||||
for x in keys:
|
|
||||||
w[x].requires_grad = False
|
|
||||||
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
|
||||||
if ('ln_out.' in x) or ('head.' in x):
|
|
||||||
layer_id = args.n_layer
|
|
||||||
dd = strategy[layer_id]
|
|
||||||
DEVICE = dd.device
|
|
||||||
ATYPE = dd.atype
|
|
||||||
WTYPE = dd.wtype
|
|
||||||
|
|
||||||
if not ALREADY_CONVERTED:
|
|
||||||
if self.RESCALE_LAYER > 0:
|
|
||||||
if 'att.output.weight' in x:
|
|
||||||
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
|
||||||
if 'ffn.value.weight' in x:
|
|
||||||
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
|
||||||
|
|
||||||
if '.time_' in x:
|
|
||||||
w[x] = w[x].squeeze()
|
|
||||||
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
|
|
||||||
w[x] = w[x].t()
|
|
||||||
|
|
||||||
if '.time_decay' in x: # need fp32 for this
|
|
||||||
w[x] = -torch.exp(w[x].float())
|
|
||||||
elif '.time_first' in x: # need fp32 for this
|
|
||||||
w[x] = w[x].float()
|
|
||||||
else:
|
|
||||||
if (len(w[x].shape) == 2) and ('emb' not in x):
|
|
||||||
if WTYPE != torch.uint8:
|
|
||||||
w[x] = w[x].to(dtype=WTYPE)
|
|
||||||
else:
|
|
||||||
w[x] = w[x].float()
|
|
||||||
|
|
||||||
if w[x].shape[0] > w[x].shape[1]:
|
|
||||||
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
|
||||||
w[x] = w[x] - w[x+'_my']
|
|
||||||
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
|
||||||
w[x] = w[x] - w[x+'_mx']
|
|
||||||
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
|
||||||
w[x] = w[x] / w[x+'_rx']
|
|
||||||
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
|
||||||
w[x] = w[x] / w[x+'_ry']
|
|
||||||
else:
|
|
||||||
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
|
||||||
w[x] = w[x] - w[x+'_mx']
|
|
||||||
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
|
||||||
w[x] = w[x] - w[x+'_my']
|
|
||||||
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
|
||||||
w[x] = w[x] / w[x+'_rx']
|
|
||||||
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
|
||||||
w[x] = w[x] / w[x+'_ry']
|
|
||||||
|
|
||||||
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
|
|
||||||
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
|
|
||||||
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
|
|
||||||
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
|
|
||||||
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
|
|
||||||
else:
|
|
||||||
w[x] = w[x].to(dtype=ATYPE)
|
|
||||||
|
|
||||||
if convert_and_save_and_exit == None:
|
|
||||||
if 'emb.' in x:
|
|
||||||
w[x] = w[x].contiguous()
|
|
||||||
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
|
|
||||||
try:
|
|
||||||
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
|
|
||||||
except:
|
|
||||||
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
|
|
||||||
elif DEVICE != 'cpu':
|
|
||||||
w[x] = w[x].to(device=DEVICE).contiguous()
|
|
||||||
|
|
||||||
if (dd.stream) or (DEVICE != 'cpu'):
|
|
||||||
try:
|
|
||||||
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
|
|
||||||
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
|
|
||||||
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
|
|
||||||
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if 'ffn.value.weight' in x:
|
|
||||||
gc.collect()
|
|
||||||
if 'cuda' in args.strategy_string:
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
shape = [i for i in w[x].shape if i != 1]
|
|
||||||
if len(shape) > 1:
|
|
||||||
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
|
|
||||||
else:
|
|
||||||
shape = f" {str(shape[0]).rjust(5)} "
|
|
||||||
if layer_id == 0 or layer_id >= args.n_layer-1:
|
|
||||||
if print_need_newline:
|
|
||||||
prxxx('\n', end = '')
|
|
||||||
print_need_newline = False
|
|
||||||
dt = str(w[x].dtype).replace('torch.', '')
|
|
||||||
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
|
|
||||||
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
|
|
||||||
else:
|
|
||||||
print_need_newline = True
|
|
||||||
prxxx('.', end = '', flush = True)
|
|
||||||
|
|
||||||
if convert_and_save_and_exit:
|
|
||||||
w['_strategy'] = args.strategy_string
|
|
||||||
w['_rescale_layer'] = self.RESCALE_LAYER
|
|
||||||
w['_version'] = '0.7'
|
|
||||||
if not convert_and_save_and_exit.endswith('.pth'):
|
|
||||||
convert_and_save_and_exit += '.pth'
|
|
||||||
prxxx(f'Saving to {convert_and_save_and_exit}...')
|
|
||||||
torch.save(w, convert_and_save_and_exit)
|
|
||||||
prxxx(f'Converted and saved. Now this will exit.')
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
gc.collect()
|
|
||||||
if 'cuda' in args.strategy_string:
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def torch_mm8_seq(self, x, w, mx, rx, my, ry):
|
|
||||||
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def torch_mm8_one(self, x, w, mx, rx, my, ry):
|
|
||||||
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
|
||||||
|
|
||||||
if os.environ.get('RWKV_CUDA_ON') == '1':
|
|
||||||
@MyFunction
|
|
||||||
def mm8_seq(self, x, w, mx, rx, my, ry):
|
|
||||||
if w.device.type == 'cuda' and x.dtype == torch.float16:
|
|
||||||
B, N, M = x.shape[0], w.shape[0], w.shape[1]
|
|
||||||
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
|
|
||||||
else:
|
|
||||||
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
|
|
||||||
@MyFunction
|
|
||||||
def mm8_one(self, x, w, mx, rx, my, ry):
|
|
||||||
if w.device.type == 'cuda':
|
|
||||||
N, M = w.shape[0], w.shape[1]
|
|
||||||
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
|
|
||||||
else:
|
|
||||||
return self.torch_mm8_one(x, w, mx, rx, my, ry)
|
|
||||||
else:
|
|
||||||
@MyFunction
|
|
||||||
def mm8_seq(self, x, w, mx, rx, my, ry):
|
|
||||||
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
|
|
||||||
@MyFunction
|
|
||||||
def mm8_one(self, x, w, mx, rx, my, ry):
|
|
||||||
return self.torch_mm8_one(x, w, mx, rx, my, ry)
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(rx @ rw)
|
|
||||||
vx = torch.square(torch.relu(kx @ kw))
|
|
||||||
out = r * (vx @ vw)
|
|
||||||
return x + out, xx
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
|
|
||||||
vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
|
|
||||||
out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
|
|
||||||
return x + out, xx
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(rx @ rw)
|
|
||||||
vx = torch.square(torch.relu(kx @ kw))
|
|
||||||
out = r * (vx @ vw)
|
|
||||||
return x + out, xx[-1,:]
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
|
|
||||||
vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
|
|
||||||
out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
|
|
||||||
return x + out, xx[-1,:]
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(rx @ rw)
|
|
||||||
k = (kx @ kw).float()
|
|
||||||
v = (vx @ vw).float()
|
|
||||||
|
|
||||||
ww = t_first + k
|
|
||||||
p = torch.maximum(pp, ww)
|
|
||||||
e1 = torch.exp(pp - p)
|
|
||||||
e2 = torch.exp(ww - p)
|
|
||||||
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
ww = t_decay + pp
|
|
||||||
p = torch.maximum(ww, k)
|
|
||||||
e1 = torch.exp(ww - p)
|
|
||||||
e2 = torch.exp(k - p)
|
|
||||||
|
|
||||||
out = (r * wkv) @ ow
|
|
||||||
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
|
|
||||||
k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
|
|
||||||
v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()
|
|
||||||
|
|
||||||
ww = t_first + k
|
|
||||||
p = torch.maximum(pp, ww)
|
|
||||||
e1 = torch.exp(pp - p)
|
|
||||||
e2 = torch.exp(ww - p)
|
|
||||||
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
ww = t_decay + pp
|
|
||||||
p = torch.maximum(ww, k)
|
|
||||||
e1 = torch.exp(ww - p)
|
|
||||||
e2 = torch.exp(k - p)
|
|
||||||
|
|
||||||
out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
|
|
||||||
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(rx @ rw)
|
|
||||||
k = (kx @ kw).float()
|
|
||||||
v = (vx @ vw).float()
|
|
||||||
|
|
||||||
T = x.shape[0]
|
|
||||||
for t in range(T):
|
|
||||||
kk = k[t]
|
|
||||||
vv = v[t]
|
|
||||||
ww = t_first + kk
|
|
||||||
p = torch.maximum(pp, ww)
|
|
||||||
e1 = torch.exp(pp - p)
|
|
||||||
e2 = torch.exp(ww - p)
|
|
||||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
ww = t_decay + pp
|
|
||||||
p = torch.maximum(ww, kk)
|
|
||||||
e1 = torch.exp(ww - p)
|
|
||||||
e2 = torch.exp(kk - p)
|
|
||||||
aa = e1 * aa + e2 * vv
|
|
||||||
bb = e1 * bb + e2
|
|
||||||
pp = p
|
|
||||||
out = (r * sx) @ ow
|
|
||||||
return x + out, xx[-1,:], aa, bb, pp
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
|
|
||||||
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
|
|
||||||
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()
|
|
||||||
|
|
||||||
T = x.shape[0]
|
|
||||||
for t in range(T):
|
|
||||||
kk = k[t]
|
|
||||||
vv = v[t]
|
|
||||||
ww = t_first + kk
|
|
||||||
p = torch.maximum(pp, ww)
|
|
||||||
e1 = torch.exp(pp - p)
|
|
||||||
e2 = torch.exp(ww - p)
|
|
||||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
ww = t_decay + pp
|
|
||||||
p = torch.maximum(ww, kk)
|
|
||||||
e1 = torch.exp(ww - p)
|
|
||||||
e2 = torch.exp(kk - p)
|
|
||||||
aa = e1 * aa + e2 * vv
|
|
||||||
bb = e1 * bb + e2
|
|
||||||
pp = p
|
|
||||||
out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
|
|
||||||
return x + out, xx[-1,:], aa, bb, pp
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
if os.environ["RWKV_CUDA_ON"] == '1':
|
|
||||||
@MyFunction
|
|
||||||
def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
|
||||||
T, C = x.size()
|
|
||||||
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(rx @ rw)
|
|
||||||
k = kx @ kw
|
|
||||||
v = vx @ vw
|
|
||||||
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
|
|
||||||
|
|
||||||
out = (r * y) @ ow
|
|
||||||
return x + out, xx[-1,:], aa, bb, pp
|
|
||||||
|
|
||||||
@MyFunction
|
|
||||||
def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
|
||||||
T, C = x.size()
|
|
||||||
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
|
|
||||||
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
|
|
||||||
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
|
|
||||||
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
|
|
||||||
|
|
||||||
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
|
|
||||||
return x + out, xx[-1,:], aa, bb, pp
|
|
||||||
|
|
||||||
########################################################################################################
|
|
||||||
|
|
||||||
def forward(self, tokens, state, full_output=False):
|
|
||||||
with torch.no_grad():
|
|
||||||
w = self.w
|
|
||||||
args = self.args
|
|
||||||
|
|
||||||
if state == None:
|
|
||||||
state = [None] * args.n_layer * 5
|
|
||||||
for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
|
|
||||||
dd = self.strategy[i]
|
|
||||||
dev = dd.device
|
|
||||||
atype = dd.atype
|
|
||||||
state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
|
||||||
state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
|
||||||
state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
|
||||||
state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
|
|
||||||
state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
|
||||||
|
|
||||||
seq_mode = len(tokens) > 1
|
|
||||||
|
|
||||||
x = w['emb.weight'][tokens if seq_mode else tokens[0]]
|
|
||||||
|
|
||||||
for i in range(args.n_layer):
|
|
||||||
bbb = f'blocks.{i}.'
|
|
||||||
att = f'blocks.{i}.att.'
|
|
||||||
ffn = f'blocks.{i}.ffn.'
|
|
||||||
dd = self.strategy[i]
|
|
||||||
dev = dd.device
|
|
||||||
atype = dd.atype
|
|
||||||
wtype = dd.wtype
|
|
||||||
if seq_mode:
|
|
||||||
if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1':
|
|
||||||
ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8
|
|
||||||
else:
|
|
||||||
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
|
|
||||||
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
|
|
||||||
else:
|
|
||||||
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
|
|
||||||
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
|
|
||||||
|
|
||||||
x = x.to(dtype=atype, device=dev)
|
|
||||||
|
|
||||||
kw = w[f'{att}key.weight']
|
|
||||||
vw = w[f'{att}value.weight']
|
|
||||||
rw = w[f'{att}receptance.weight']
|
|
||||||
ow = w[f'{att}output.weight']
|
|
||||||
if dd.stream:
|
|
||||||
kw = kw.to(device=dev, non_blocking=True)
|
|
||||||
vw = vw.to(device=dev, non_blocking=True)
|
|
||||||
rw = rw.to(device=dev, non_blocking=True)
|
|
||||||
ow = ow.to(device=dev, non_blocking=True)
|
|
||||||
kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
|
|
||||||
krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
|
|
||||||
kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
|
|
||||||
kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
|
|
||||||
vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
|
|
||||||
vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
|
|
||||||
vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
|
|
||||||
vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
|
|
||||||
rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
|
|
||||||
rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
|
|
||||||
rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
|
|
||||||
rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
|
|
||||||
omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
|
|
||||||
orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
|
|
||||||
omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
|
|
||||||
ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
|
|
||||||
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
|
|
||||||
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
|
|
||||||
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
|
||||||
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
|
|
||||||
w[f'{att}time_decay'], w[f'{att}time_first'],
|
|
||||||
kw, vw, rw, ow,
|
|
||||||
kmx, krx, kmy, kry,
|
|
||||||
vmx, vrx, vmy, vry,
|
|
||||||
rmx, rrx, rmy, rry,
|
|
||||||
omx, orx, omy, ory,
|
|
||||||
)
|
|
||||||
if dd.stream:
|
|
||||||
del kw, vw, rw, ow
|
|
||||||
|
|
||||||
kw = w[f'{ffn}key.weight']
|
|
||||||
vw = w[f'{ffn}value.weight']
|
|
||||||
rw = w[f'{ffn}receptance.weight']
|
|
||||||
if dd.stream:
|
|
||||||
kw = kw.to(device=dev, non_blocking=True)
|
|
||||||
vw = vw.to(device=dev, non_blocking=True)
|
|
||||||
rw = rw.to(device=dev, non_blocking=True)
|
|
||||||
kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
|
|
||||||
krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
|
|
||||||
kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
|
|
||||||
kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
|
|
||||||
vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
|
|
||||||
vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
|
|
||||||
vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
|
|
||||||
vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
|
|
||||||
rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
|
|
||||||
rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
|
|
||||||
rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
|
|
||||||
rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
|
|
||||||
x, state[i*5+4] = FFN(
|
|
||||||
x, state[i*5+4],
|
|
||||||
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
|
|
||||||
w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
|
|
||||||
kw, vw, rw,
|
|
||||||
kmx, krx, kmy, kry,
|
|
||||||
vmx, vrx, vmy, vry,
|
|
||||||
rmx, rrx, rmy, rry,
|
|
||||||
)
|
|
||||||
if dd.stream:
|
|
||||||
del kw, vw, rw
|
|
||||||
|
|
||||||
if self.RESCALE_LAYER > 0:
|
|
||||||
if (i+1) % self.RESCALE_LAYER == 0:
|
|
||||||
x = x / 2
|
|
||||||
|
|
||||||
dd = self.strategy[args.n_layer]
|
|
||||||
x = x[-1,:] if (seq_mode and (not full_output)) else x
|
|
||||||
x = x.to(dtype=dd.atype, device=dd.device)
|
|
||||||
|
|
||||||
x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
|
|
||||||
if w['head.weight'].dtype != torch.uint8:
|
|
||||||
x = x @ w['head.weight']
|
|
||||||
else:
|
|
||||||
if seq_mode and full_output:
|
|
||||||
x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
|
||||||
else:
|
|
||||||
x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
|
||||||
|
|
||||||
return x.float(), state
|
|
Loading…
Reference in New Issue
Block a user