deprecate rwkv-beta
This commit is contained in:
parent
ef4b82a91d
commit
79476f66a6
@ -28,7 +28,7 @@ func (a *App) StartServer(python string, port int, host string, webui bool, rwkv
|
|||||||
args = append(args, "--webui")
|
args = append(args, "--webui")
|
||||||
}
|
}
|
||||||
if rwkvBeta {
|
if rwkvBeta {
|
||||||
args = append(args, "--rwkv-beta")
|
// args = append(args, "--rwkv-beta")
|
||||||
}
|
}
|
||||||
if rwkvcpp {
|
if rwkvcpp {
|
||||||
args = append(args, "--rwkv.cpp")
|
args = append(args, "--rwkv.cpp")
|
||||||
|
@ -27,11 +27,6 @@ def get_args(args: Union[Sequence[str], None] = None):
|
|||||||
action="store_true",
|
action="store_true",
|
||||||
help="whether to enable WebUI (default: False)",
|
help="whether to enable WebUI (default: False)",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
|
||||||
"--rwkv-beta",
|
|
||||||
action="store_true",
|
|
||||||
help="whether to use rwkv-beta (default: False)",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--rwkv.cpp",
|
"--rwkv.cpp",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
|
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
@ -1,124 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#include "element_wise.h"
|
|
||||||
#include "util.h"
|
|
||||||
|
|
||||||
// Equivalent Python code:
|
|
||||||
// ww = t_first + k
|
|
||||||
// p = torch.maximum(pp, ww)
|
|
||||||
// e1 = torch.exp(pp - p)
|
|
||||||
// e2 = torch.exp(ww - p)
|
|
||||||
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
// ww = t_decay + pp
|
|
||||||
// p = torch.maximum(ww, k)
|
|
||||||
// e1 = torch.exp(ww - p)
|
|
||||||
// e2 = torch.exp(k - p)
|
|
||||||
// t1 = e1 * aa + e2 * v
|
|
||||||
// t2 = e1 * bb + e2
|
|
||||||
// r = r * wkv
|
|
||||||
// return t1, t2, p, r
|
|
||||||
struct WkvForwardOne {
|
|
||||||
const float *t_first;
|
|
||||||
const float *k;
|
|
||||||
const float *pp;
|
|
||||||
const float *aa;
|
|
||||||
const float *bb;
|
|
||||||
const float *t_decay;
|
|
||||||
const float *v;
|
|
||||||
/* out */ float *t1;
|
|
||||||
/* out */ float *t2;
|
|
||||||
/* out */ float *p;
|
|
||||||
/* in & out */ half *r;
|
|
||||||
|
|
||||||
__device__ void operator()(int i) const {
|
|
||||||
float ww = t_first[i] + k[i];
|
|
||||||
float pp_ = pp[i];
|
|
||||||
float p_ = (pp_ > ww) ? pp_ : ww;
|
|
||||||
float e1 = expf(pp_ - p_);
|
|
||||||
float e2 = expf(ww - p_);
|
|
||||||
float aa_ = aa[i];
|
|
||||||
float bb_ = bb[i];
|
|
||||||
float v_ = v[i];
|
|
||||||
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
|
|
||||||
ww = t_decay[i] + pp_;
|
|
||||||
float k_ = k[i];
|
|
||||||
p_ = (ww > k_) ? ww : k_;
|
|
||||||
e1 = expf(ww - p_);
|
|
||||||
e2 = expf(k_ - p_);
|
|
||||||
t1[i] = e1 * aa_ + e2 * v_;
|
|
||||||
t2[i] = e1 * bb_ + e2;
|
|
||||||
p[i] = p_;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
*/
|
|
||||||
|
|
||||||
struct Mix {
|
|
||||||
const half *xx;
|
|
||||||
const half *sx;
|
|
||||||
const half *k_mix;
|
|
||||||
const half *v_mix;
|
|
||||||
const half *r_mix;
|
|
||||||
/* out */ half *kx;
|
|
||||||
/* out */ half *vx;
|
|
||||||
/* out */ half *rx;
|
|
||||||
|
|
||||||
__device__ void operator()(int i) const {
|
|
||||||
half xx_ = xx[i];
|
|
||||||
half sx_ = sx[i];
|
|
||||||
half k_mix_ = k_mix[i];
|
|
||||||
half v_mix_ = v_mix[i];
|
|
||||||
half r_mix_ = r_mix[i];
|
|
||||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
|
||||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
|
||||||
|
|
||||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
|
||||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
|
||||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
|
||||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
|
||||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
|
||||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
|
||||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
|
||||||
/* out */ Tensor t2, /* out */ Tensor p) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
|
||||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
|
||||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
|
||||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
|
||||||
x.numel());
|
|
||||||
|
|
||||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
|
||||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
|
||||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
|
||||||
at::sigmoid_(r);
|
|
||||||
|
|
||||||
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
|
|
||||||
data_ptr<float>(pp), data_ptr<float>(aa),
|
|
||||||
data_ptr<float>(bb), data_ptr<float>(t_decay),
|
|
||||||
data_ptr<float>(v), data_ptr<float>(t1),
|
|
||||||
data_ptr<float>(t2), data_ptr<float>(p),
|
|
||||||
data_ptr<half>(r)},
|
|
||||||
x.numel());
|
|
||||||
|
|
||||||
gemm_fp16_cublas_tensor(r, ow, x_plus_out);
|
|
||||||
x_plus_out += x;
|
|
||||||
return xx;
|
|
||||||
}
|
|
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
@ -1,109 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#include "element_wise.h"
|
|
||||||
#include "util.h"
|
|
||||||
|
|
||||||
// Equivalent Python code:
|
|
||||||
// s1 = t_first * a + s
|
|
||||||
// s2 = a + t_decay * s
|
|
||||||
struct Fused1 {
|
|
||||||
const float *t_first;
|
|
||||||
const float *t_decay;
|
|
||||||
const float *a;
|
|
||||||
const float *s;
|
|
||||||
const int32_t inner_size;
|
|
||||||
/* out */ float *s1;
|
|
||||||
/* out */ float *s2;
|
|
||||||
|
|
||||||
__device__ void operator()(int i) const {
|
|
||||||
const int j = i / inner_size;
|
|
||||||
s1[i] = t_first[j] * a[i] + s[i];
|
|
||||||
s2[i] = a[i] + t_decay[j] * s[i];
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
*/
|
|
||||||
|
|
||||||
struct Mix {
|
|
||||||
const half *xx;
|
|
||||||
const half *sx;
|
|
||||||
const half *k_mix;
|
|
||||||
const half *v_mix;
|
|
||||||
const half *r_mix;
|
|
||||||
/* out */ half *kx;
|
|
||||||
/* out */ half *vx;
|
|
||||||
/* out */ half *rx;
|
|
||||||
|
|
||||||
__device__ void operator()(int i) const {
|
|
||||||
half xx_ = xx[i];
|
|
||||||
half sx_ = sx[i];
|
|
||||||
half k_mix_ = k_mix[i];
|
|
||||||
half v_mix_ = v_mix[i];
|
|
||||||
half r_mix_ = r_mix[i];
|
|
||||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
|
||||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
|
||||||
|
|
||||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
|
||||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
|
||||||
Tensor r_mix, Tensor kw,
|
|
||||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
|
||||||
Tensor rw,
|
|
||||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
|
||||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
|
||||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
|
||||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
|
||||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
|
||||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
|
||||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
|
||||||
x.numel());
|
|
||||||
|
|
||||||
int H = t_decay.size(0);
|
|
||||||
int S = x.size(-1) / H;
|
|
||||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
|
||||||
r = at::reshape(r, {H, 1, S});
|
|
||||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
|
||||||
k = at::reshape(k, {H, S, 1});
|
|
||||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
|
||||||
v = at::reshape(v, {H, 1, S});
|
|
||||||
|
|
||||||
{
|
|
||||||
Tensor a = at::matmul(k, v);
|
|
||||||
|
|
||||||
// s1 = t_first * a + s
|
|
||||||
// s2 = a + t_decay * s
|
|
||||||
element_wise(Fused1{data_ptr<float>(t_first), data_ptr<float>(t_decay),
|
|
||||||
data_ptr<float>(a), data_ptr<float>(s),
|
|
||||||
static_cast<int32_t>(a.size(1) * a.size(2)),
|
|
||||||
data_ptr<float>(s1), data_ptr<float>(s2)},
|
|
||||||
a.numel());
|
|
||||||
}
|
|
||||||
|
|
||||||
Tensor out = at::matmul(r, s1);
|
|
||||||
out = at::flatten(out);
|
|
||||||
out = at::squeeze(at::group_norm(at::unsqueeze(out, 0), H, lx_w, lx_b), 0);
|
|
||||||
out = at::_cast_Half(out);
|
|
||||||
|
|
||||||
gemm_fp16_cublas_tensor(out, ow, x_plus_out);
|
|
||||||
x_plus_out += x;
|
|
||||||
return xx;
|
|
||||||
}
|
|
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
@ -1,178 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#include "util.h"
|
|
||||||
#include "element_wise.h"
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
|
|
||||||
int n, int k, bool output_fp32);
|
|
||||||
|
|
||||||
// based on `kernel_wkv_forward`, fusing more operations
|
|
||||||
__global__ void kernel_wkv_forward_new(
|
|
||||||
const int B, const int T, const int C, const float *__restrict__ const _w,
|
|
||||||
const float *__restrict__ const _u, const float *__restrict__ const _k,
|
|
||||||
const float *__restrict__ const _v, const half *__restrict__ const r,
|
|
||||||
half *__restrict__ const _y, float *__restrict__ const _aa,
|
|
||||||
float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
|
||||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const int _b = idx / C;
|
|
||||||
const int _c = idx % C;
|
|
||||||
const int _offset = _b * T * C + _c;
|
|
||||||
const int _state_offset = _b * C + _c;
|
|
||||||
|
|
||||||
float u = _u[_c];
|
|
||||||
float w = _w[_c];
|
|
||||||
const float *__restrict__ const k = _k + _offset;
|
|
||||||
const float *__restrict__ const v = _v + _offset;
|
|
||||||
half *__restrict__ const y = _y + _offset;
|
|
||||||
|
|
||||||
float aa = _aa[_state_offset];
|
|
||||||
float bb = _bb[_state_offset];
|
|
||||||
float pp = _pp[_state_offset];
|
|
||||||
for (int i = 0; i < T; i++) {
|
|
||||||
const int ii = i * C;
|
|
||||||
const float kk = k[ii];
|
|
||||||
const float vv = v[ii];
|
|
||||||
float ww = u + kk;
|
|
||||||
float p = max(pp, ww);
|
|
||||||
float e1 = exp(pp - p);
|
|
||||||
float e2 = exp(ww - p);
|
|
||||||
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
|
||||||
ww = w + pp;
|
|
||||||
p = max(ww, kk);
|
|
||||||
e1 = exp(ww - p);
|
|
||||||
e2 = exp(kk - p);
|
|
||||||
aa = e1 * aa + e2 * vv;
|
|
||||||
bb = e1 * bb + e2;
|
|
||||||
pp = p;
|
|
||||||
}
|
|
||||||
_aa[_state_offset] = aa;
|
|
||||||
_bb[_state_offset] = bb;
|
|
||||||
_pp[_state_offset] = pp;
|
|
||||||
}
|
|
||||||
|
|
||||||
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
|
|
||||||
float *v, half *r, half *y, float *aa, float *bb,
|
|
||||||
float *pp) {
|
|
||||||
dim3 threadsPerBlock(min(C, 32));
|
|
||||||
assert(B * C % threadsPerBlock.x == 0);
|
|
||||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
|
||||||
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
|
|
||||||
y, aa, bb, pp);
|
|
||||||
}
|
|
||||||
|
|
||||||
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *v_mix, const half *r_mix,
|
|
||||||
const int outer_size, const int inner_size, half *kx,
|
|
||||||
half *vx, half *rx) {
|
|
||||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
|
||||||
idx2 += blockDim.x * gridDim.x) {
|
|
||||||
half k_mix_ = k_mix[idx2];
|
|
||||||
half v_mix_ = v_mix[idx2];
|
|
||||||
half r_mix_ = r_mix[idx2];
|
|
||||||
for (int row = 0; row < outer_size; ++row) {
|
|
||||||
int idx1 = row * inner_size + idx2;
|
|
||||||
half xx_ = xx[idx1];
|
|
||||||
half sx_ = sx[idx1];
|
|
||||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
|
||||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void att_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *v_mix, const half *r_mix, const int outer_size,
|
|
||||||
const int inner_size, half *kx, half *vx, half *rx) {
|
|
||||||
// 256 is good enough on most GPUs
|
|
||||||
const int32_t BLOCK_SIZE = 256;
|
|
||||||
assert(inner_size % BLOCK_SIZE == 0);
|
|
||||||
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
||||||
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct InplaceSigmoid {
|
|
||||||
__device__ __forceinline__ half operator()(int i) const {
|
|
||||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
|
||||||
}
|
|
||||||
half *ptr;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct InplaceMul {
|
|
||||||
__device__ __forceinline__ half operator()(int i) const {
|
|
||||||
y[i] = __hmul(x[i], y[i]);
|
|
||||||
}
|
|
||||||
half *y;
|
|
||||||
half *x;
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(gemm(rx, rw))
|
|
||||||
k = gemm(kx, kw, output_dtype=torch.float32)
|
|
||||||
v = gemm(vx, vw, output_dtype=torch.float32)
|
|
||||||
|
|
||||||
T = x.shape[0]
|
|
||||||
for t in range(T):
|
|
||||||
kk = k[t]
|
|
||||||
vv = v[t]
|
|
||||||
ww = t_first + kk
|
|
||||||
p = torch.maximum(pp, ww)
|
|
||||||
e1 = torch.exp(pp - p)
|
|
||||||
e2 = torch.exp(ww - p)
|
|
||||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
ww = t_decay + pp
|
|
||||||
p = torch.maximum(ww, kk)
|
|
||||||
e1 = torch.exp(ww - p)
|
|
||||||
e2 = torch.exp(kk - p)
|
|
||||||
aa = e1 * aa + e2 * vv
|
|
||||||
bb = e1 * bb + e2
|
|
||||||
pp = p
|
|
||||||
out = gemm(r * sx, ow)
|
|
||||||
return x + out, xx[-1,:], aa, bb, pp
|
|
||||||
*/
|
|
||||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
|
||||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
|
||||||
char* buf_ptr = (char*)buf.data_ptr();
|
|
||||||
half* kx = (half*)buf_ptr;
|
|
||||||
half* vx = kx + x.numel();
|
|
||||||
half* rx = vx + x.numel();
|
|
||||||
half* wkv_y = rx + x.numel();
|
|
||||||
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
|
||||||
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
|
|
||||||
kx, vx, rx);
|
|
||||||
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
|
|
||||||
float* v = k + x.size(0) * kw.size(1);
|
|
||||||
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
|
|
||||||
|
|
||||||
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
|
|
||||||
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
|
|
||||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
|
|
||||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
|
||||||
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
|
|
||||||
data_ptr<float>(t_first), k, v, r,
|
|
||||||
wkv_y, data_ptr<float>(aa),
|
|
||||||
data_ptr<float>(bb), data_ptr<float>(pp));
|
|
||||||
element_wise(InplaceMul{wkv_y, r}, x.numel());
|
|
||||||
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
|
|
||||||
x_plus_out += x;
|
|
||||||
return xx;
|
|
||||||
}
|
|
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
@ -1,21 +0,0 @@
|
|||||||
#include <cassert>
|
|
||||||
#include <cstddef>
|
|
||||||
#include <cstdint>
|
|
||||||
|
|
||||||
template <typename Func> __global__ void _element_wise(Func func, int n) {
|
|
||||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
|
|
||||||
i += blockDim.x * gridDim.x) {
|
|
||||||
func(i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
|
|
||||||
// (4096 in 7B model and 768 in 0.1B model),
|
|
||||||
// and is not faster than the plain float version.
|
|
||||||
template <typename Func>
|
|
||||||
void element_wise(Func func, int n) {
|
|
||||||
// 256 is good enough on most GPUs
|
|
||||||
const int32_t BLOCK_SIZE = 256;
|
|
||||||
assert(n % BLOCK_SIZE == 0);
|
|
||||||
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
|
|
||||||
}
|
|
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
@ -1,165 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#include "element_wise.h"
|
|
||||||
#include "util.h"
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
|
||||||
int ori_n, int ori_k, bool output_fp32);
|
|
||||||
|
|
||||||
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *r_mix, const int outer_size,
|
|
||||||
const int inner_size, half *kx, half *rx) {
|
|
||||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
|
||||||
idx2 += blockDim.x * gridDim.x) {
|
|
||||||
half k_mix_ = k_mix[idx2];
|
|
||||||
half r_mix_ = r_mix[idx2];
|
|
||||||
for (int row = 0; row < outer_size; ++row) {
|
|
||||||
int idx1 = row * inner_size + idx2;
|
|
||||||
half xx_ = xx[idx1];
|
|
||||||
half sx_ = sx[idx1];
|
|
||||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *r_mix, const int outer_size, const int inner_size,
|
|
||||||
half *kx, half *rx) {
|
|
||||||
// 256 is good enough on most GPUs
|
|
||||||
const int32_t BLOCK_SIZE = 256;
|
|
||||||
assert(inner_size % BLOCK_SIZE == 0);
|
|
||||||
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
||||||
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct InplaceSigmoid {
|
|
||||||
__device__ __forceinline__ void operator()(int i) const {
|
|
||||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
|
||||||
}
|
|
||||||
half *ptr;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct InplaceReLUAndSquare {
|
|
||||||
__device__ __forceinline__ void operator()(int i) const {
|
|
||||||
// __hmax is not defined in old cuda
|
|
||||||
if (__hgt(ptr[i], __float2half(0))) {
|
|
||||||
ptr[i] = __hmul(ptr[i], ptr[i]);
|
|
||||||
} else {
|
|
||||||
ptr[i] = __float2half(0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
half *ptr;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct InplaceFma {
|
|
||||||
__device__ __forceinline__ void operator()(int i) const {
|
|
||||||
a[i] = __hfma(a[i], b[i], c[i]);
|
|
||||||
}
|
|
||||||
half *a;
|
|
||||||
const half *b;
|
|
||||||
const half *c;
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(gemm(rx, rw))
|
|
||||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
|
||||||
out = r * gemm(vx, vw)
|
|
||||||
return x + out, xx[-1,:]
|
|
||||||
*/
|
|
||||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
/* imm */ Tensor buf,
|
|
||||||
/* out */ Tensor x_plus_out) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
|
||||||
char *buf_ptr = (char *)buf.data_ptr();
|
|
||||||
half *kx = (half *)buf_ptr;
|
|
||||||
half *rx = kx + x.numel();
|
|
||||||
half *vx = rx + x.numel();
|
|
||||||
half *r = vx + x.size(0) * kw.size(1);
|
|
||||||
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
|
||||||
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
|
|
||||||
|
|
||||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
|
|
||||||
false);
|
|
||||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
|
||||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
|
|
||||||
false);
|
|
||||||
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
|
|
||||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
|
|
||||||
vw.size(1), vw.size(0), false);
|
|
||||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
|
||||||
x_plus_out.numel());
|
|
||||||
return xx;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct FfnOneMix {
|
|
||||||
__device__ __forceinline__ void operator()(int idx) {
|
|
||||||
half k_mix_ = k_mix[idx];
|
|
||||||
half r_mix_ = r_mix[idx];
|
|
||||||
half xx_ = xx[idx];
|
|
||||||
half sx_ = sx[idx];
|
|
||||||
kx[idx] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
rx[idx] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
half *k_mix;
|
|
||||||
half *r_mix;
|
|
||||||
half *xx;
|
|
||||||
half *sx;
|
|
||||||
half *kx;
|
|
||||||
half *rx;
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(gemm(rx, rw))
|
|
||||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
|
||||||
out = r * gemm(vx, vw)
|
|
||||||
return x + out, xx
|
|
||||||
*/
|
|
||||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
/* imm */ Tensor buf,
|
|
||||||
/* out */ Tensor x_plus_out) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
char *buf_ptr = (char *)buf.data_ptr();
|
|
||||||
half *kx = (half *)buf_ptr;
|
|
||||||
half *rx = kx + x.numel();
|
|
||||||
half *vx = rx + x.numel();
|
|
||||||
half *r = vx + x.size(0) * kw.size(1);
|
|
||||||
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
|
|
||||||
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
|
|
||||||
x.numel());
|
|
||||||
// vector * matrix, so m = 1
|
|
||||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
|
|
||||||
element_wise(InplaceSigmoid{r}, rw.size(1));
|
|
||||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
|
|
||||||
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
|
|
||||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
|
|
||||||
vw.size(0), false);
|
|
||||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
|
||||||
x_plus_out.numel());
|
|
||||||
return xx;
|
|
||||||
}
|
|
@ -1,128 +0,0 @@
|
|||||||
#include <cublas_v2.h>
|
|
||||||
#include <cuda.h>
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#define CUBLAS_CHECK(condition) \
|
|
||||||
for (cublasStatus_t _cublas_check_status = (condition); \
|
|
||||||
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
|
|
||||||
throw std::runtime_error("cuBLAS error " + \
|
|
||||||
std::to_string(_cublas_check_status) + " at " + \
|
|
||||||
std::to_string(__LINE__));
|
|
||||||
|
|
||||||
#define CUDA_CHECK(condition) \
|
|
||||||
for (cudaError_t _cuda_check_status = (condition); \
|
|
||||||
_cuda_check_status != cudaSuccess;) \
|
|
||||||
throw std::runtime_error( \
|
|
||||||
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
|
|
||||||
" at " + std::to_string(__LINE__));
|
|
||||||
|
|
||||||
cublasHandle_t get_cublas_handle() {
|
|
||||||
static cublasHandle_t cublas_handle = []() {
|
|
||||||
cublasHandle_t handle = nullptr;
|
|
||||||
CUBLAS_CHECK(cublasCreate(&handle));
|
|
||||||
#if CUDA_VERSION < 11000
|
|
||||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
|
|
||||||
#else
|
|
||||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
|
|
||||||
#endif // CUDA_VERSION < 11000
|
|
||||||
return handle;
|
|
||||||
}();
|
|
||||||
return cublas_handle;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
|
||||||
The data of row-major, transposed matrix is exactly the same as the
|
|
||||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
|
||||||
*/
|
|
||||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
|
||||||
int ori_n, int ori_k, bool output_fp32) {
|
|
||||||
const auto cuda_data_type = CUDA_R_16F;
|
|
||||||
const auto cuda_c_data_type = output_fp32 ? CUDA_R_32F : CUDA_R_16F;
|
|
||||||
const auto compute_type = CUDA_R_32F;
|
|
||||||
const float sp_alpha = 1.f;
|
|
||||||
// use CUBLAS_OP_N. see the notes above
|
|
||||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
|
||||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
|
||||||
// m = (B^T).size(0) = B.size(1) = n;
|
|
||||||
const int cublas_m = ori_n;
|
|
||||||
const int cublas_k = ori_k;
|
|
||||||
// comptiable with rwkv one mode, where 1-D tensor * 2-D tensor
|
|
||||||
// const int n = a.dense_dim() == 1 ? 1 : a.size(0);
|
|
||||||
const int cublas_n = ori_m;
|
|
||||||
const int cublas_lda = cublas_m;
|
|
||||||
const int cublas_ldb = cublas_k;
|
|
||||||
const int cublas_ldc = cublas_m;
|
|
||||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
|
||||||
|
|
||||||
#if CUDA_VERSION >= 11000
|
|
||||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
|
||||||
#else
|
|
||||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
|
||||||
#endif
|
|
||||||
const float sp_beta = 0.f;
|
|
||||||
CUBLAS_CHECK(cublasGemmEx(
|
|
||||||
cublas_handle, cublas_trans_a, cublas_trans_b, cublas_m, cublas_n,
|
|
||||||
cublas_k, &sp_alpha, b, cuda_data_type, cublas_lda,
|
|
||||||
a, cuda_data_type, cublas_ldb, &sp_beta, c,
|
|
||||||
cuda_c_data_type, cublas_ldc, compute_type, algo));
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
|
||||||
The data of row-major, transposed matrix is exactly the same as the
|
|
||||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
|
||||||
*/
|
|
||||||
void gemm_fp16_cublas_tensor(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
|
|
||||||
if (a.sizes().size() == 1) {
|
|
||||||
assert(b.sizes().size() == 2);
|
|
||||||
a = at::unsqueeze(a, 0);
|
|
||||||
}
|
|
||||||
const auto cuda_data_type = CUDA_R_16F;
|
|
||||||
const auto cuda_c_data_type =
|
|
||||||
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
|
|
||||||
const auto compute_type = CUDA_R_32F;
|
|
||||||
const float sp_alpha = 1.f;
|
|
||||||
// swap a and b, and use CUBLAS_OP_N. see the notes above
|
|
||||||
std::swap(a, b);
|
|
||||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
|
||||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
|
||||||
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
|
|
||||||
// negative axis is used because of the existence of batch matmul.
|
|
||||||
const int m = a.size(-1);
|
|
||||||
const int k = a.size(-2);
|
|
||||||
const int n = b.size(-2);
|
|
||||||
const int cublas_lda = m;
|
|
||||||
const int cublas_ldb = k;
|
|
||||||
const int cublas_ldc = m;
|
|
||||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
|
||||||
|
|
||||||
#if CUDA_VERSION >= 11000
|
|
||||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
|
||||||
#else
|
|
||||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
|
||||||
#endif
|
|
||||||
const float sp_beta = 0.f;
|
|
||||||
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
|
|
||||||
CUBLAS_CHECK(cublasGemmEx(
|
|
||||||
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
|
|
||||||
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
|
|
||||||
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
|
|
||||||
compute_type, algo));
|
|
||||||
} else {
|
|
||||||
// batch matmul
|
|
||||||
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
|
|
||||||
|
|
||||||
const long long int cublas_stride_a = m * k;
|
|
||||||
const long long int cublas_stride_b = k * n;
|
|
||||||
const long long int cublas_stride_c = m * n;
|
|
||||||
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
|
|
||||||
cublas_handle, cublas_trans_a, cublas_trans_b, m,
|
|
||||||
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
|
|
||||||
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
|
|
||||||
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
|
|
||||||
a.size(0), compute_type, algo));
|
|
||||||
}
|
|
||||||
}
|
|
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
@ -1,246 +0,0 @@
|
|||||||
#include <stdio.h>
|
|
||||||
#include <assert.h>
|
|
||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#define MIN_VALUE (-1e38)
|
|
||||||
typedef at::Half fp16;
|
|
||||||
__half *cast(fp16 *ptr) {
|
|
||||||
return reinterpret_cast<__half *>(ptr);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
|
|
||||||
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
|
||||||
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
|
||||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const int _b = idx / C;
|
|
||||||
const int _c = idx % C;
|
|
||||||
const int _offset = _b * T * C + _c;
|
|
||||||
const int _state_offset = _b * C + _c;
|
|
||||||
|
|
||||||
float u = _u[_c];
|
|
||||||
float w = _w[_c];
|
|
||||||
const F *__restrict__ const k = _k + _offset;
|
|
||||||
const F *__restrict__ const v = _v + _offset;
|
|
||||||
F *__restrict__ const y = _y + _offset;
|
|
||||||
|
|
||||||
float aa = _aa[_state_offset];
|
|
||||||
float bb = _bb[_state_offset];
|
|
||||||
float pp = _pp[_state_offset];
|
|
||||||
for (int i = 0; i < T; i++) {
|
|
||||||
const int ii = i * C;
|
|
||||||
const float kk = float(k[ii]);
|
|
||||||
const float vv = float(v[ii]);
|
|
||||||
float ww = u + kk;
|
|
||||||
float p = max(pp, ww);
|
|
||||||
float e1 = exp(pp - p);
|
|
||||||
float e2 = exp(ww - p);
|
|
||||||
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
|
||||||
ww = w + pp;
|
|
||||||
p = max(ww, kk);
|
|
||||||
e1 = exp(ww - p);
|
|
||||||
e2 = exp(kk - p);
|
|
||||||
aa = e1 * aa + e2 * vv;
|
|
||||||
bb = e1 * bb + e2;
|
|
||||||
pp = p;
|
|
||||||
}
|
|
||||||
_aa[_state_offset] = aa;
|
|
||||||
_bb[_state_offset] = bb;
|
|
||||||
_pp[_state_offset] = pp;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
|
|
||||||
dim3 threadsPerBlock( min(C, 32) );
|
|
||||||
assert(B * C % threadsPerBlock.x == 0);
|
|
||||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
|
||||||
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
|
|
||||||
}
|
|
||||||
|
|
||||||
template void cuda_wkv_forward<fp16>(
|
|
||||||
int B, int T, int C,
|
|
||||||
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
|
|
||||||
float *aa, float *bb, float *pp);
|
|
||||||
template void cuda_wkv_forward<float>(
|
|
||||||
int B, int T, int C,
|
|
||||||
float *w, float *u, float *k, float *v, float *y,
|
|
||||||
float *aa, float *bb, float *pp);
|
|
||||||
|
|
||||||
__global__ void kernel_mm_seq_fp32i8(
|
|
||||||
const int B, const int N, const int M,
|
|
||||||
const float *__restrict__ const x, const int x_stride,
|
|
||||||
const uint8_t *__restrict__ const w, const int w_stride,
|
|
||||||
const float *__restrict__ const mx,
|
|
||||||
const float *__restrict__ const rx,
|
|
||||||
const float *__restrict__ const my,
|
|
||||||
const float *__restrict__ const ry,
|
|
||||||
float *__restrict__ const y, const int y_stride) {
|
|
||||||
|
|
||||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
|
||||||
|
|
||||||
if (i < B && k < M) {
|
|
||||||
float y_local = 0;
|
|
||||||
for (int j = 0; j < N; ++j) {
|
|
||||||
y_local += x[i * x_stride + j] * (
|
|
||||||
(float(w[j * w_stride + k]) + 0.5f)
|
|
||||||
* rx[k] * ry[j] + mx[k] + my[j]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
y[i * y_stride + k] = y_local;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
void cuda_mm8_seq(int B, int N, int M,
|
|
||||||
F *x, int x_stride,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
F *mx, F *rx,
|
|
||||||
F *my, F *ry,
|
|
||||||
F *y, int y_stride);
|
|
||||||
|
|
||||||
template <>
|
|
||||||
void cuda_mm8_seq<float>(int B, int N, int M,
|
|
||||||
float *x, int x_stride,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
float *mx, float *rx,
|
|
||||||
float *my, float *ry,
|
|
||||||
float *y, int y_stride) {
|
|
||||||
dim3 blockSize(1, 128);
|
|
||||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
|
||||||
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
|
|
||||||
B, N, M, x, x_stride, w, w_stride,
|
|
||||||
mx, rx, my, ry, y, y_stride);
|
|
||||||
}
|
|
||||||
|
|
||||||
__global__ void kernel_mm_seq_fp16i8(
|
|
||||||
const int B, const int N, const int M,
|
|
||||||
const __half *__restrict__ const x, const int x_stride,
|
|
||||||
const uint8_t *__restrict__ const w, const int w_stride,
|
|
||||||
const __half *__restrict__ const mx,
|
|
||||||
const __half *__restrict__ const rx,
|
|
||||||
const __half *__restrict__ const my,
|
|
||||||
const __half *__restrict__ const ry,
|
|
||||||
__half *__restrict__ const y, const int y_stride) {
|
|
||||||
|
|
||||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
|
||||||
|
|
||||||
if (i < B && k < M) {
|
|
||||||
float y_local = 0;
|
|
||||||
for (int j = 0; j < N; ++j) {
|
|
||||||
y_local += __half2float(x[i * x_stride + j]) * (
|
|
||||||
(float(w[j * w_stride + k]) + 0.5f)
|
|
||||||
* __half2float(rx[k]) * __half2float(ry[j])
|
|
||||||
+ __half2float(mx[k]) + __half2float(my[j])
|
|
||||||
);
|
|
||||||
}
|
|
||||||
y[i * y_stride + k] = __float2half(y_local);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <>
|
|
||||||
void cuda_mm8_seq<fp16>(int B, int N, int M,
|
|
||||||
fp16 *x, int x_stride,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
fp16 *mx, fp16 *rx,
|
|
||||||
fp16 *my, fp16 *ry,
|
|
||||||
fp16 *y, int y_stride) {
|
|
||||||
dim3 blockSize(1, 128);
|
|
||||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
|
||||||
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
|
|
||||||
B, N, M, cast(x), x_stride, w, w_stride,
|
|
||||||
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
|
|
||||||
}
|
|
||||||
|
|
||||||
#define MM8_ONE_JSPLIT 24
|
|
||||||
#define MM8_ONE_TILE 1024
|
|
||||||
|
|
||||||
__global__ void kernel_mm_one_fp32i8(
|
|
||||||
const int N, const int M,
|
|
||||||
const float *__restrict__ const x,
|
|
||||||
const uint8_t *__restrict__ const w, const int w_stride,
|
|
||||||
const float *__restrict__ const mx,
|
|
||||||
const float *__restrict__ const rx,
|
|
||||||
const float *__restrict__ const my,
|
|
||||||
const float *__restrict__ const ry,
|
|
||||||
float *__restrict__ const y) {
|
|
||||||
|
|
||||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
|
||||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
|
||||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
|
||||||
|
|
||||||
if (k < M) {
|
|
||||||
float y_local = 0;
|
|
||||||
for (int j = j0; j < j1; ++j) {
|
|
||||||
y_local += x[j] * (
|
|
||||||
(float(w[j * w_stride + k]) + 0.5f)
|
|
||||||
* rx[k] * ry[j] + mx[k] + my[j]
|
|
||||||
);
|
|
||||||
}
|
|
||||||
atomicAdd(&y[k], y_local);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
void cuda_mm8_one(int N, int M,
|
|
||||||
F *x,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
F *mx, F *rx,
|
|
||||||
F *my, F *ry,
|
|
||||||
float *y);
|
|
||||||
|
|
||||||
template <>
|
|
||||||
void cuda_mm8_one<float>(int N, int M,
|
|
||||||
float *x,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
float *mx, float *rx,
|
|
||||||
float *my, float *ry,
|
|
||||||
float *y) {
|
|
||||||
dim3 blockSize(1, MM8_ONE_TILE);
|
|
||||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
|
||||||
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
|
|
||||||
N, M, x, w, w_stride,
|
|
||||||
mx, rx, my, ry, y);
|
|
||||||
}
|
|
||||||
|
|
||||||
__global__ void kernel_mm_one_fp16i8(
|
|
||||||
const int N, const int M,
|
|
||||||
const __half *__restrict__ const x,
|
|
||||||
const uint8_t *__restrict__ const w, const int w_stride,
|
|
||||||
const __half *__restrict__ const mx,
|
|
||||||
const __half *__restrict__ const rx,
|
|
||||||
const __half *__restrict__ const my,
|
|
||||||
const __half *__restrict__ const ry,
|
|
||||||
float *__restrict__ const y) {
|
|
||||||
|
|
||||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
|
||||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
|
||||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
|
||||||
|
|
||||||
if (k < M) {
|
|
||||||
float y_local = 0;
|
|
||||||
for (int j = j0; j < j1; ++j) {
|
|
||||||
y_local += __half2float(x[j]) * (
|
|
||||||
(float(w[j * w_stride + k]) + 0.5f)
|
|
||||||
* __half2float(rx[k]) * __half2float(ry[j])
|
|
||||||
+ __half2float(mx[k]) + __half2float(my[j])
|
|
||||||
);
|
|
||||||
}
|
|
||||||
atomicAdd(&y[k], y_local);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <>
|
|
||||||
void cuda_mm8_one<fp16>(int N, int M,
|
|
||||||
fp16 *x,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
fp16 *mx, fp16 *rx,
|
|
||||||
fp16 *my, fp16 *ry,
|
|
||||||
float *y) {
|
|
||||||
dim3 blockSize(1, MM8_ONE_TILE);
|
|
||||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
|
||||||
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
|
|
||||||
N, M, cast(x), w, w_stride,
|
|
||||||
cast(mx), cast(rx), cast(my), cast(ry), y);
|
|
||||||
}
|
|
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
@ -1,7 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
|
|
||||||
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
|
|
||||||
template <> inline half *data_ptr(torch::Tensor x) {
|
|
||||||
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
|
|
||||||
}
|
|
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
@ -1,181 +0,0 @@
|
|||||||
#include <torch/extension.h>
|
|
||||||
#include "ATen/ATen.h"
|
|
||||||
#include <iostream>
|
|
||||||
#include <c10/cuda/CUDAGuard.h>
|
|
||||||
|
|
||||||
typedef at::Half fp16;
|
|
||||||
|
|
||||||
template <typename F>
|
|
||||||
void cuda_wkv_forward(int B, int T, int C,
|
|
||||||
float *w, float *u, F *k, F *v, F *y,
|
|
||||||
float *aa, float *bb, float *pp);
|
|
||||||
template <typename F>
|
|
||||||
void cuda_mm8_seq(int B, int N, int M,
|
|
||||||
F *x, int x_stride,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
F *mx, F *rx,
|
|
||||||
F *my, F *ry,
|
|
||||||
F *y, int y_stride);
|
|
||||||
template <typename F>
|
|
||||||
void cuda_mm8_one(int N, int M,
|
|
||||||
F *x,
|
|
||||||
uint8_t *w, int w_stride,
|
|
||||||
F *mx, F *rx,
|
|
||||||
F *my, F *ry,
|
|
||||||
float *y);
|
|
||||||
|
|
||||||
void wkv_forward(int64_t B, int64_t T, int64_t C,
|
|
||||||
torch::Tensor &w, torch::Tensor &u,
|
|
||||||
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
|
||||||
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
|
|
||||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
|
||||||
switch (k.scalar_type()) {
|
|
||||||
case c10::ScalarType::Half:
|
|
||||||
cuda_wkv_forward(B, T, C,
|
|
||||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
|
||||||
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
|
|
||||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
|
||||||
break;
|
|
||||||
case c10::ScalarType::Float:
|
|
||||||
cuda_wkv_forward(B, T, C,
|
|
||||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
|
||||||
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
|
|
||||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
assert(false && "Only FP16 and FP32 are currently supported");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void mm8_seq(int64_t B, int64_t N, int64_t M,
|
|
||||||
torch::Tensor &x, torch::Tensor &w,
|
|
||||||
torch::Tensor &mx, torch::Tensor &rx,
|
|
||||||
torch::Tensor &my, torch::Tensor &ry,
|
|
||||||
torch::Tensor &y) {
|
|
||||||
assert(x.stride(1) == 1);
|
|
||||||
assert(w.stride(1) == 1);
|
|
||||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
|
||||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
|
||||||
assert(y.stride(1) == 1);
|
|
||||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
|
||||||
switch (x.scalar_type()) {
|
|
||||||
case c10::ScalarType::Half:
|
|
||||||
cuda_mm8_seq(
|
|
||||||
B, N, M,
|
|
||||||
x.data_ptr<fp16>(), x.stride(0),
|
|
||||||
w.data_ptr<uint8_t>(), w.stride(0),
|
|
||||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
|
||||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
|
||||||
y.data_ptr<fp16>(), y.stride(0));
|
|
||||||
break;
|
|
||||||
case c10::ScalarType::Float:
|
|
||||||
cuda_mm8_seq(
|
|
||||||
B, N, M,
|
|
||||||
x.data_ptr<float>(), x.stride(0),
|
|
||||||
w.data_ptr<uint8_t>(), w.stride(0),
|
|
||||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
|
||||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
|
||||||
y.data_ptr<float>(), y.stride(0));
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
assert(false && "Only FP16 and FP32 are currently supported");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void mm8_one(int64_t N, int64_t M,
|
|
||||||
torch::Tensor &x, torch::Tensor &w,
|
|
||||||
torch::Tensor &mx, torch::Tensor &rx,
|
|
||||||
torch::Tensor &my, torch::Tensor &ry,
|
|
||||||
torch::Tensor &y) {
|
|
||||||
assert(x.stride(0) == 1);
|
|
||||||
assert(w.stride(1) == 1);
|
|
||||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
|
||||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
|
||||||
assert(y.stride(0) == 1);
|
|
||||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
|
||||||
switch (x.scalar_type()) {
|
|
||||||
case c10::ScalarType::Half:
|
|
||||||
cuda_mm8_one(
|
|
||||||
N, M,
|
|
||||||
x.data_ptr<fp16>(),
|
|
||||||
w.data_ptr<uint8_t>(), w.stride(0),
|
|
||||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
|
||||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
|
||||||
y.data_ptr<float>());
|
|
||||||
break;
|
|
||||||
case c10::ScalarType::Float:
|
|
||||||
cuda_mm8_one(
|
|
||||||
N, M,
|
|
||||||
x.data_ptr<float>(),
|
|
||||||
w.data_ptr<uint8_t>(), w.stride(0),
|
|
||||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
|
||||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
|
||||||
y.data_ptr<float>());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
assert(false && "Only FP16 and FP32 are currently supported");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
#ifndef DISABLE_CUBLAS_GEMM
|
|
||||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
|
||||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
|
||||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
|
||||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
|
||||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
|
||||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
|
||||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
|
||||||
/* out */ Tensor t2, /* out */ Tensor p);
|
|
||||||
|
|
||||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
|
||||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out);
|
|
||||||
|
|
||||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
|
||||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
|
||||||
Tensor r_mix, Tensor kw,
|
|
||||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
|
||||||
Tensor rw,
|
|
||||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
|
||||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
|
||||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
|
||||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2);
|
|
||||||
|
|
||||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
/* imm */ Tensor buf,
|
|
||||||
/* out */ Tensor x_plus_out);
|
|
||||||
|
|
||||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
/* imm */ Tensor buf,
|
|
||||||
/* out */ Tensor x_plus_out);
|
|
||||||
|
|
||||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|
||||||
m.def("wkv_forward", &wkv_forward, "wkv forward");
|
|
||||||
m.def("mm8_seq", &mm8_seq, "mm8 seq");
|
|
||||||
m.def("mm8_one", &mm8_one, "mm8 one");
|
|
||||||
m.def("gemm_fp16_cublas", &gemm_fp16_cublas_tensor, "gemv fp16 cublas");
|
|
||||||
m.def("att_one", &att_one, "att one");
|
|
||||||
m.def("att_one_v5", &att_one_v5, "att one v5");
|
|
||||||
m.def("att_seq", &att_seq, "att seq");
|
|
||||||
m.def("ffn_seq", &ffn_seq, "ffn seq");
|
|
||||||
m.def("ffn_one", &ffn_one, "ffn one");
|
|
||||||
}
|
|
||||||
|
|
||||||
TORCH_LIBRARY(rwkv, m) {
|
|
||||||
m.def("wkv_forward", wkv_forward);
|
|
||||||
m.def("mm8_seq", mm8_seq);
|
|
||||||
m.def("mm8_one", mm8_one);
|
|
||||||
m.def("gemm_fp16_cublas", gemm_fp16_cublas_tensor);
|
|
||||||
m.def("att_one", att_one);
|
|
||||||
m.def("att_one_v5", &att_one_v5);
|
|
||||||
m.def("att_seq", att_seq);
|
|
||||||
m.def("ffn_seq", ffn_seq);
|
|
||||||
m.def("ffn_one", ffn_one);
|
|
||||||
}
|
|
1821
backend-python/rwkv_pip/beta/model.py
vendored
1821
backend-python/rwkv_pip/beta/model.py
vendored
File diff suppressed because it is too large
Load Diff
BIN
backend-python/rwkv_pip/beta/wkv_cuda.pyd
vendored
BIN
backend-python/rwkv_pip/beta/wkv_cuda.pyd
vendored
Binary file not shown.
@ -617,7 +617,6 @@ def get_model_path(model_path: str) -> str:
|
|||||||
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
|
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
|
||||||
model_path = get_model_path(model)
|
model_path = get_model_path(model)
|
||||||
|
|
||||||
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
|
|
||||||
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
|
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
|
||||||
webgpu = global_var.get(global_var.Args).webgpu
|
webgpu = global_var.get(global_var.Args).webgpu
|
||||||
|
|
||||||
@ -625,12 +624,7 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
|
|||||||
os.environ["RWKV_RESCALE_LAYER"] = "999"
|
os.environ["RWKV_RESCALE_LAYER"] = "999"
|
||||||
|
|
||||||
# dynamic import to make RWKV_CUDA_ON work
|
# dynamic import to make RWKV_CUDA_ON work
|
||||||
if rwkv_beta:
|
if rwkv_cpp:
|
||||||
print("Using rwkv-beta")
|
|
||||||
from rwkv_pip.beta.model import (
|
|
||||||
RWKV as Model,
|
|
||||||
)
|
|
||||||
elif rwkv_cpp:
|
|
||||||
print("Using rwkv.cpp, strategy is ignored")
|
print("Using rwkv.cpp, strategy is ignored")
|
||||||
from rwkv_pip.cpp.model import (
|
from rwkv_pip.cpp.model import (
|
||||||
RWKV as Model,
|
RWKV as Model,
|
||||||
|
Loading…
Reference in New Issue
Block a user