update Labeled desc
This commit is contained in:
@@ -22,8 +22,8 @@ export const Configs: FC = observer(() => {
|
||||
const {t} = useTranslation();
|
||||
const [selectedIndex, setSelectedIndex] = React.useState(commonStore.currentModelConfigIndex);
|
||||
const [selectedConfig, setSelectedConfig] = React.useState(commonStore.modelConfigs[selectedIndex]);
|
||||
|
||||
const navigate = useNavigate();
|
||||
const port = selectedConfig.apiParameters.apiPort;
|
||||
|
||||
const updateSelectedIndex = (newIndex: number) => {
|
||||
setSelectedIndex(newIndex);
|
||||
@@ -104,55 +104,72 @@ export const Configs: FC = observer(() => {
|
||||
desc={t('Hover your mouse over the text to view a detailed description. Settings marked with * will take effect immediately after being saved.')}
|
||||
content={
|
||||
<div className="grid grid-cols-1 sm:grid-cols-2 gap-2">
|
||||
<Labeled label={t('API Port')} desc={`127.0.0.1:${selectedConfig.apiParameters.apiPort}`} content={
|
||||
<NumberInput value={selectedConfig.apiParameters.apiPort} min={1} max={65535} step={1}
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
apiPort: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Max Response Token *')} content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.maxResponseToken} min={100} max={8100} step={400}
|
||||
input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
maxResponseToken: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Temperature *')} content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.temperature} min={0} max={2} step={0.1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
temperature: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Top_P *')} content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.topP} min={0} max={1} step={0.1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
topP: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Presence Penalty *')} content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.presencePenalty} min={-2} max={2} step={0.1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
presencePenalty: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Frequency Penalty *')} content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.frequencyPenalty} min={-2} max={2} step={0.1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
frequencyPenalty: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('API Port')}
|
||||
desc={t('Open the following URL with your browser to view the API documentation') + `: http://127.0.0.1:${port}/docs. ` +
|
||||
t('This tool’s API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the \'https://api.openai.com\' part in the API address with \'') + `http://127.0.0.1:${port}` + '\'.'}
|
||||
content={
|
||||
<NumberInput value={port} min={1} max={65535} step={1}
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
apiPort: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Max Response Token *')}
|
||||
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
|
||||
content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.maxResponseToken} min={100} max={8100}
|
||||
step={400}
|
||||
input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
maxResponseToken: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Temperature *')}
|
||||
desc={t('Sampling temperature, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
|
||||
content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.temperature} min={0} max={2} step={0.1}
|
||||
input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
temperature: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Top_P *')}
|
||||
desc={t('Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
|
||||
content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.topP} min={0} max={1} step={0.1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
topP: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Presence Penalty *')}
|
||||
desc={t('Positive values penalize new tokens based on whether they appear in the text so far, increasing the model\'s likelihood to talk about new topics.')}
|
||||
content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.presencePenalty} min={-2} max={2}
|
||||
step={0.1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
presencePenalty: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Frequency Penalty *')}
|
||||
desc={t('Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model\'s likelihood to repeat the same line verbatim.')}
|
||||
content={
|
||||
<ValuedSlider value={selectedConfig.apiParameters.frequencyPenalty} min={-2} max={2}
|
||||
step={0.1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigApiParams({
|
||||
frequencyPenalty: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
</div>
|
||||
}
|
||||
/>
|
||||
@@ -208,38 +225,45 @@ export const Configs: FC = observer(() => {
|
||||
<Option>CUDA</Option>
|
||||
</Dropdown>
|
||||
}/>
|
||||
<Labeled label={t('Precision')} content={
|
||||
<Dropdown style={{minWidth: 0}} className="grow" value={selectedConfig.modelParameters.precision}
|
||||
selectedOptions={[selectedConfig.modelParameters.precision]}
|
||||
onOptionSelect={(_, data) => {
|
||||
if (data.optionText) {
|
||||
setSelectedConfigModelParams({
|
||||
precision: data.optionText as Precision
|
||||
});
|
||||
}
|
||||
}}>
|
||||
<Option>fp16</Option>
|
||||
<Option>int8</Option>
|
||||
<Option>fp32</Option>
|
||||
</Dropdown>
|
||||
}/>
|
||||
<Labeled label={t('Stored Layers')} content={
|
||||
<ValuedSlider value={selectedConfig.modelParameters.storedLayers} min={0}
|
||||
max={selectedConfig.modelParameters.maxStoredLayers} step={1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigModelParams({
|
||||
storedLayers: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Enable High Precision For Last Layer')} content={
|
||||
<Switch checked={selectedConfig.modelParameters.enableHighPrecisionForLastLayer}
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigModelParams({
|
||||
enableHighPrecisionForLastLayer: data.checked
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Precision')}
|
||||
desc={t('int8 uses less VRAM, and is faster, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
|
||||
content={
|
||||
<Dropdown style={{minWidth: 0}} className="grow"
|
||||
value={selectedConfig.modelParameters.precision}
|
||||
selectedOptions={[selectedConfig.modelParameters.precision]}
|
||||
onOptionSelect={(_, data) => {
|
||||
if (data.optionText) {
|
||||
setSelectedConfigModelParams({
|
||||
precision: data.optionText as Precision
|
||||
});
|
||||
}
|
||||
}}>
|
||||
<Option>fp16</Option>
|
||||
<Option>int8</Option>
|
||||
<Option>fp32</Option>
|
||||
</Dropdown>
|
||||
}/>
|
||||
<Labeled label={t('Stored Layers')}
|
||||
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM.')}
|
||||
content={
|
||||
<ValuedSlider value={selectedConfig.modelParameters.storedLayers} min={0}
|
||||
max={selectedConfig.modelParameters.maxStoredLayers} step={1} input
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigModelParams({
|
||||
storedLayers: data.value
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
<Labeled label={t('Enable High Precision For Last Layer')}
|
||||
desc={t('Whether to use CPU to calculate the last output layer of the neural network with FP32 precision to obtain better quality.')}
|
||||
content={
|
||||
<Switch checked={selectedConfig.modelParameters.enableHighPrecisionForLastLayer}
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigModelParams({
|
||||
enableHighPrecisionForLastLayer: data.checked
|
||||
});
|
||||
}}/>
|
||||
}/>
|
||||
</div>
|
||||
}
|
||||
/>
|
||||
|
||||
Reference in New Issue
Block a user