This commit is contained in:
josc146 2023-12-14 18:37:07 +08:00
parent 01c95f5bc4
commit 0ddd2e9fea
16 changed files with 155 additions and 34 deletions

View File

@ -98,6 +98,7 @@ jobs:
rm ./backend-python/get-pip.py rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64 mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
@ -124,6 +125,7 @@ jobs:
rm ./backend-python/get-pip.py rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so rm ./backend-python/rwkv_pip/cpp/librwkv.so
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal

View File

@ -10,7 +10,7 @@ import (
"strings" "strings"
) )
func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool, rwkvcpp bool) (string, error) { func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool, rwkvcpp bool, webgpu bool) (string, error) {
var err error var err error
if python == "" { if python == "" {
python, err = GetPython() python, err = GetPython()
@ -28,6 +28,9 @@ func (a *App) StartServer(python string, port int, host string, webui bool, rwkv
if rwkvcpp { if rwkvcpp {
args = append(args, "--rwkv.cpp") args = append(args, "--rwkv.cpp")
} }
if webgpu {
args = append(args, "--webgpu")
}
args = append(args, "--port", strconv.Itoa(port), "--host", host) args = append(args, "--port", strconv.Itoa(port), "--host", host)
return Cmd(args...) return Cmd(args...)
} }
@ -55,6 +58,17 @@ func (a *App) ConvertSafetensors(modelPath string, outPath string) (string, erro
return Cmd(args...) return Cmd(args...)
} }
func (a *App) ConvertSafetensorsWithPython(python string, modelPath string, outPath string) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/convert_safetensors.py", "--input", modelPath, "--output", outPath)
}
func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 bool) (string, error) { func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 bool) (string, error) {
var err error var err error
if python == "" { if python == "" {

View File

@ -30,6 +30,33 @@ def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=
if "state_dict" in loaded: if "state_dict" in loaded:
loaded = loaded["state_dict"] loaded = loaded["state_dict"]
kk = list(loaded.keys())
version = 4
for x in kk:
if "ln_x" in x:
version = max(5, version)
if "gate.weight" in x:
version = max(5.1, version)
if int(version) == 5 and "att.time_decay" in x:
if len(loaded[x].shape) > 1:
if loaded[x].shape[1] > 1:
version = max(5.2, version)
if "time_maa" in x:
version = max(6, version)
if version == 5.1 and "midi" in pt_filename.lower():
import numpy as np
np.set_printoptions(precision=4, suppress=True, linewidth=200)
kk = list(loaded.keys())
_, n_emb = loaded["emb.weight"].shape
for k in kk:
if "time_decay" in k or "time_faaaa" in k:
# print(k, mm[k].shape)
loaded[k] = (
loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
)
loaded = {k: v.clone().half() for k, v in loaded.items()} loaded = {k: v.clone().half() for k, v in loaded.items()}
# for k, v in loaded.items(): # for k, v in loaded.items():
# print(f'{k}\t{v.shape}\t{v.dtype}') # print(f'{k}\t{v.shape}\t{v.dtype}')

View File

@ -37,6 +37,11 @@ def get_args(args: Union[Sequence[str], None] = None):
action="store_true", action="store_true",
help="whether to use rwkv.cpp (default: False)", help="whether to use rwkv.cpp (default: False)",
) )
group.add_argument(
"--webgpu",
action="store_true",
help="whether to use webgpu (default: False)",
)
args = parser.parse_args(args) args = parser.parse_args(args)
return args return args

View File

@ -8,7 +8,6 @@ import base64
from fastapi import APIRouter, Request, status, HTTPException from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
import numpy as np
import tiktoken import tiktoken
from utils.rwkv import * from utils.rwkv import *
from utils.log import quick_log from utils.log import quick_log
@ -396,6 +395,8 @@ class EmbeddingsBody(BaseModel):
def embedding_base64(embedding: List[float]) -> str: def embedding_base64(embedding: List[float]) -> str:
import numpy as np
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8") return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")

View File

@ -87,18 +87,34 @@ def add_state(body: AddStateBody):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded") raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch import torch
import numpy as np
try: try:
devices: List[torch.device] = []
state: Union[Any, None] = None
if body.state is not None:
if type(body.state) == list or type(body.state) == np.ndarray:
devices = [
(
tensor.device
if hasattr(tensor, "device")
else torch.device("cpu")
)
for tensor in body.state
]
state = (
[tensor.cpu() for tensor in body.state]
if hasattr(body.state[0], "device")
else copy.deepcopy(body.state)
)
else:
pass # WebGPU
id: int = trie.insert(body.prompt) id: int = trie.insert(body.prompt)
devices: List[torch.device] = [
(tensor.device if hasattr(tensor, "device") else torch.device("cpu"))
for tensor in body.state
]
dtrie[id] = { dtrie[id] = {
"tokens": copy.deepcopy(body.tokens), "tokens": copy.deepcopy(body.tokens),
"state": [tensor.cpu() for tensor in body.state] "state": state,
if hasattr(body.state[0], "device")
else copy.deepcopy(body.state),
"logits": copy.deepcopy(body.logits), "logits": copy.deepcopy(body.logits),
"devices": devices, "devices": devices,
} }
@ -174,6 +190,7 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded") raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch import torch
import numpy as np
id = -1 id = -1
try: try:
@ -185,14 +202,16 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
v = dtrie[id] v = dtrie[id]
devices: List[torch.device] = v["devices"] devices: List[torch.device] = v["devices"]
prompt: str = trie[id] prompt: str = trie[id]
state: Union[Any, None] = v["state"]
if state is not None and type(state) == list and hasattr(state[0], "device"):
state = [tensor.to(devices[i]) for i, tensor in enumerate(state)]
quick_log(request, body, "Hit:\n" + prompt) quick_log(request, body, "Hit:\n" + prompt)
return { return {
"prompt": prompt, "prompt": prompt,
"tokens": v["tokens"], "tokens": v["tokens"],
"state": [tensor.to(devices[i]) for i, tensor in enumerate(v["state"])] "state": state,
if hasattr(v["state"][0], "device")
else v["state"],
"logits": v["logits"], "logits": v["logits"],
} }
else: else:

View File

@ -84,6 +84,8 @@ class PIPELINE:
return e / e.sum(axis=axis, keepdims=True) return e / e.sum(axis=axis, keepdims=True)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0): def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
if type(logits) == list:
logits = np.array(logits)
np_logits = type(logits) == np.ndarray np_logits = type(logits) == np.ndarray
if np_logits: if np_logits:
probs = self.np_softmax(logits, axis=-1) probs = self.np_softmax(logits, axis=-1)

21
backend-python/rwkv_pip/webgpu/model.py vendored Normal file
View File

@ -0,0 +1,21 @@
from typing import Any, List, Union
try:
import web_rwkv_py as wrp
except ModuleNotFoundError:
try:
from . import web_rwkv_py as wrp
except ImportError:
raise ModuleNotFoundError(
"web_rwkv_py not found, install it from https://github.com/cryscan/web-rwkv-py"
)
class RWKV:
def __init__(self, model_path: str, strategy=None):
self.model = wrp.v5.Model(model_path, turbo=False)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * wrp.peek_info(model_path).num_vocab
def forward(self, tokens: List[int], state: Union[Any, None] = None):
return wrp.v5.run_one(self.model, tokens, state)

View File

@ -8,7 +8,6 @@ from typing import Dict, Iterable, List, Tuple, Union, Type
from utils.log import quick_log from utils.log import quick_log
from fastapi import HTTPException from fastapi import HTTPException
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
import numpy as np
from routes import state_cache from routes import state_cache
import global_var import global_var
@ -68,6 +67,8 @@ class AbstractRWKV(ABC):
pass pass
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]: def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
import numpy as np
if fast_mode: if fast_mode:
embedding, token_len = self.__fast_embedding( embedding, token_len = self.__fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None self.fix_tokens(self.pipeline.encode(input)), None
@ -222,6 +223,8 @@ class AbstractRWKV(ABC):
def generate( def generate(
self, prompt: str, stop: Union[str, List[str], None] = None self, prompt: str, stop: Union[str, List[str], None] = None
) -> Iterable[Tuple[str, str, int, int]]: ) -> Iterable[Tuple[str, str, int, int]]:
import numpy as np
quick_log(None, None, "Generation Prompt:\n" + prompt) quick_log(None, None, "Generation Prompt:\n" + prompt)
cache = None cache = None
delta_prompt = prompt delta_prompt = prompt
@ -231,7 +234,7 @@ class AbstractRWKV(ABC):
) )
except HTTPException: except HTTPException:
pass pass
if cache is None or cache["prompt"] == "": if cache is None or cache["prompt"] == "" or cache["state"] is None:
self.model_state = None self.model_state = None
self.model_tokens = [] self.model_tokens = []
else: else:
@ -511,6 +514,7 @@ def get_tokenizer(tokenizer_len: int):
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV: def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
rwkv_beta = global_var.get(global_var.Args).rwkv_beta rwkv_beta = global_var.get(global_var.Args).rwkv_beta
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp") rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
webgpu = global_var.get(global_var.Args).webgpu
if "midi" in model.lower() or "abc" in model.lower(): if "midi" in model.lower() or "abc" in model.lower():
os.environ["RWKV_RESCALE_LAYER"] = "999" os.environ["RWKV_RESCALE_LAYER"] = "999"
@ -526,6 +530,11 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
from rwkv_pip.cpp.model import ( from rwkv_pip.cpp.model import (
RWKV as Model, RWKV as Model,
) )
elif webgpu:
print("Using webgpu")
from rwkv_pip.webgpu.model import (
RWKV as Model,
)
else: else:
from rwkv_pip.model import ( from rwkv_pip.model import (
RWKV as Model, RWKV as Model,

View File

@ -48,6 +48,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const modelConfig = commonStore.getCurrentModelConfig(); const modelConfig = commonStore.getCurrentModelConfig();
const webgpu = modelConfig.modelParameters.device === 'WebGPU'; const webgpu = modelConfig.modelParameters.device === 'WebGPU';
const webgpuPython = modelConfig.modelParameters.device === 'WebGPU (Python)';
const cpp = modelConfig.modelParameters.device === 'CPU (rwkv.cpp)'; const cpp = modelConfig.modelParameters.device === 'CPU (rwkv.cpp)';
let modelName = ''; let modelName = '';
let modelPath = ''; let modelPath = '';
@ -77,7 +78,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}); });
}; };
if (webgpu) { if (webgpu || webgpuPython) {
if (!['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) { if (!['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) {
const stModelPath = modelPath.replace(/\.pth$/, '.st'); const stModelPath = modelPath.replace(/\.pth$/, '.st');
if (await FileExists(stModelPath)) { if (await FileExists(stModelPath)) {
@ -92,7 +93,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
return; return;
} else { } else {
toastWithButton(t('Please convert model to safe tensors format first'), t('Convert'), () => { toastWithButton(t('Please convert model to safe tensors format first'), t('Convert'), () => {
convertToSt(modelConfig); convertToSt(modelConfig, navigate);
}); });
commonStore.setStatus({ status: ModelStatus.Offline }); commonStore.setStatus({ status: ModelStatus.Offline });
return; return;
@ -100,7 +101,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
} }
} }
if (!webgpu) { if (!webgpu && !webgpuPython) {
if (['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) { if (['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) {
toast(t('Please change Strategy to WebGPU to use safetensors format'), { type: 'error' }); toast(t('Please change Strategy to WebGPU to use safetensors format'), { type: 'error' });
commonStore.setStatus({ status: ModelStatus.Offline }); commonStore.setStatus({ status: ModelStatus.Offline });
@ -176,7 +177,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const isUsingCudaBeta = modelConfig.modelParameters.device === 'CUDA-Beta'; const isUsingCudaBeta = modelConfig.modelParameters.device === 'CUDA-Beta';
startServer(commonStore.settings.customPythonPath, port, commonStore.settings.host !== '127.0.0.1' ? '0.0.0.0' : '127.0.0.1', startServer(commonStore.settings.customPythonPath, port, commonStore.settings.host !== '127.0.0.1' ? '0.0.0.0' : '127.0.0.1',
!!modelConfig.enableWebUI, isUsingCudaBeta, cpp !!modelConfig.enableWebUI, isUsingCudaBeta, cpp, webgpuPython
).catch((e) => { ).catch((e) => {
const errMsg = e.message || e; const errMsg = e.message || e;
if (errMsg.includes('path contains space')) if (errMsg.includes('path contains space'))
@ -216,7 +217,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const strategy = getStrategy(modelConfig); const strategy = getStrategy(modelConfig);
let customCudaFile = ''; let customCudaFile = '';
if ((modelConfig.modelParameters.device.includes('CUDA') || modelConfig.modelParameters.device === 'Custom') if ((modelConfig.modelParameters.device.startsWith('CUDA') || modelConfig.modelParameters.device === 'Custom')
&& modelConfig.modelParameters.useCustomCuda && modelConfig.modelParameters.useCustomCuda
&& !strategy.split('->').some(s => ['cuda', 'fp32'].every(v => s.includes(v)))) { && !strategy.split('->').some(s => ['cuda', 'fp32'].every(v => s.includes(v)))) {
if (commonStore.platform === 'windows') { if (commonStore.platform === 'windows') {
@ -264,7 +265,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
navigate({ pathname: '/' + buttonName.toLowerCase() }); navigate({ pathname: '/' + buttonName.toLowerCase() });
}; };
if ((modelConfig.modelParameters.device === 'CUDA' || modelConfig.modelParameters.device === 'CUDA-Beta') && if (modelConfig.modelParameters.device.startsWith('CUDA') &&
modelConfig.modelParameters.storedLayers < modelConfig.modelParameters.maxStoredLayers && modelConfig.modelParameters.storedLayers < modelConfig.modelParameters.maxStoredLayers &&
commonStore.monitorData && commonStore.monitorData.totalVram !== 0 && commonStore.monitorData && commonStore.monitorData.totalVram !== 0 &&
(commonStore.monitorData.usedVram / commonStore.monitorData.totalVram) < 0.9) (commonStore.monitorData.usedVram / commonStore.monitorData.totalVram) < 0.9)

View File

@ -246,7 +246,7 @@ const Configs: FC = observer(() => {
</div> </div>
} /> } />
{ {
selectedConfig.modelParameters.device !== 'WebGPU' ? !selectedConfig.modelParameters.device.startsWith('WebGPU') ?
(selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' ? (selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' ?
<ToolTipButton text={t('Convert')} <ToolTipButton text={t('Convert')}
desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')} desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')}
@ -256,7 +256,7 @@ const Configs: FC = observer(() => {
onClick={() => convertToGGML(selectedConfig, navigate)} />) onClick={() => convertToGGML(selectedConfig, navigate)} />)
: <ToolTipButton text={t('Convert To Safe Tensors Format')} : <ToolTipButton text={t('Convert To Safe Tensors Format')}
desc="" desc=""
onClick={() => convertToSt(selectedConfig)} /> onClick={() => convertToSt(selectedConfig, navigate)} />
} }
<Labeled label={t('Strategy')} content={ <Labeled label={t('Strategy')} content={
<Dropdown style={{ minWidth: 0 }} className="grow" value={t(selectedConfig.modelParameters.device)!} <Dropdown style={{ minWidth: 0 }} className="grow" value={t(selectedConfig.modelParameters.device)!}
@ -274,6 +274,7 @@ const Configs: FC = observer(() => {
<Option value="CUDA">CUDA</Option> <Option value="CUDA">CUDA</Option>
<Option value="CUDA-Beta">{t('CUDA (Beta, Faster)')!}</Option> <Option value="CUDA-Beta">{t('CUDA (Beta, Faster)')!}</Option>
<Option value="WebGPU">WebGPU</Option> <Option value="WebGPU">WebGPU</Option>
<Option value="WebGPU (Python)">WebGPU (Python)</Option>
<Option value="Custom">{t('Custom')!}</Option> <Option value="Custom">{t('Custom')!}</Option>
</Dropdown> </Dropdown>
} /> } />
@ -281,7 +282,8 @@ const Configs: FC = observer(() => {
selectedConfig.modelParameters.device !== 'Custom' && <Labeled label={t('Precision')} selectedConfig.modelParameters.device !== 'Custom' && <Labeled label={t('Precision')}
desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality.')} desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality.')}
content={ content={
<Dropdown style={{ minWidth: 0 }} className="grow" <Dropdown disabled={selectedConfig.modelParameters.device === 'WebGPU (Python)'}
style={{ minWidth: 0 }} className="grow"
value={selectedConfig.modelParameters.precision} value={selectedConfig.modelParameters.precision}
selectedOptions={[selectedConfig.modelParameters.precision]} selectedOptions={[selectedConfig.modelParameters.precision]}
onOptionSelect={(_, data) => { onOptionSelect={(_, data) => {
@ -302,12 +304,12 @@ const Configs: FC = observer(() => {
} /> } />
} }
{ {
selectedConfig.modelParameters.device.includes('CUDA') && selectedConfig.modelParameters.device.startsWith('CUDA') &&
<Labeled label={t('Current Strategy')} <Labeled label={t('Current Strategy')}
content={<Text> {getStrategy(selectedConfig)} </Text>} /> content={<Text> {getStrategy(selectedConfig)} </Text>} />
} }
{ {
selectedConfig.modelParameters.device.includes('CUDA') && selectedConfig.modelParameters.device.startsWith('CUDA') &&
<Labeled label={t('Stored Layers')} <Labeled label={t('Stored Layers')}
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM. (If your VRAM is not enough, it will fail to load)')} desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM. (If your VRAM is not enough, it will fail to load)')}
content={ content={
@ -320,7 +322,7 @@ const Configs: FC = observer(() => {
}} /> }} />
} /> } />
} }
{selectedConfig.modelParameters.device.includes('CUDA') && <div />} {selectedConfig.modelParameters.device.startsWith('CUDA') && <div />}
{ {
displayStrategyImg && displayStrategyImg &&
<img style={{ width: '80vh', height: 'auto', zIndex: 100 }} <img style={{ width: '80vh', height: 'auto', zIndex: 100 }}
@ -345,7 +347,7 @@ const Configs: FC = observer(() => {
} }
{selectedConfig.modelParameters.device === 'Custom' && <div />} {selectedConfig.modelParameters.device === 'Custom' && <div />}
{ {
(selectedConfig.modelParameters.device.includes('CUDA') || selectedConfig.modelParameters.device === 'Custom') && (selectedConfig.modelParameters.device.startsWith('CUDA') || selectedConfig.modelParameters.device === 'Custom') &&
<Labeled label={t('Use Custom CUDA kernel to Accelerate')} <Labeled label={t('Use Custom CUDA kernel to Accelerate')}
desc={t('Enabling this option can greatly improve inference speed and save some VRAM, but there may be compatibility issues (output garbled). If it fails to start, please turn off this option, or try to upgrade your gpu driver.')} desc={t('Enabling this option can greatly improve inference speed and save some VRAM, but there may be compatibility issues (output garbled). If it fails to start, please turn off this option, or try to upgrade your gpu driver.')}
content={ content={

View File

@ -6,7 +6,7 @@ export type ApiParameters = {
presencePenalty: number; presencePenalty: number;
frequencyPenalty: number; frequencyPenalty: number;
} }
export type Device = 'CPU' | 'CPU (rwkv.cpp)' | 'CUDA' | 'CUDA-Beta' | 'WebGPU' | 'MPS' | 'Custom'; export type Device = 'CPU' | 'CPU (rwkv.cpp)' | 'CUDA' | 'CUDA-Beta' | 'WebGPU' | 'WebGPU (Python)' | 'MPS' | 'Custom';
export type Precision = 'fp16' | 'int8' | 'fp32' | 'nf4' | 'Q5_1'; export type Precision = 'fp16' | 'int8' | 'fp32' | 'nf4' | 'Q5_1';
export type ModelParameters = { export type ModelParameters = {
// different models can not have the same name // different models can not have the same name

View File

@ -5,6 +5,7 @@ import {
ConvertGGML, ConvertGGML,
ConvertModel, ConvertModel,
ConvertSafetensors, ConvertSafetensors,
ConvertSafetensorsWithPython,
FileExists, FileExists,
GetPyError GetPyError
} from '../../wailsjs/go/backend_golang/App'; } from '../../wailsjs/go/backend_golang/App';
@ -51,12 +52,22 @@ export const convertModel = async (selectedConfig: ModelConfig, navigate: Naviga
}; };
export const convertToSt = async (selectedConfig: ModelConfig) => { export const convertToSt = async (selectedConfig: ModelConfig, navigate: NavigateFunction) => {
const webgpuPython = selectedConfig.modelParameters.device === 'WebGPU (Python)';
if (webgpuPython) {
const ok = await checkDependencies(navigate);
if (!ok)
return;
}
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`; const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) { if (await FileExists(modelPath)) {
toast(t('Start Converting'), { autoClose: 2000, type: 'info' }); toast(t('Start Converting'), { autoClose: 2000, type: 'info' });
const newModelPath = modelPath.replace(/\.pth$/, '.st'); const newModelPath = modelPath.replace(/\.pth$/, '.st');
ConvertSafetensors(modelPath, newModelPath).then(async () => { const convert = webgpuPython ?
(input: string, output: string) => ConvertSafetensorsWithPython(commonStore.settings.customPythonPath, input, output)
: ConvertSafetensors;
convert(modelPath, newModelPath).then(async () => {
if (!await FileExists(newModelPath)) { if (!await FileExists(newModelPath)) {
if (commonStore.platform === 'windows' || commonStore.platform === 'linux') if (commonStore.platform === 'windows' || commonStore.platform === 'linux')
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' }); toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });

View File

@ -192,6 +192,7 @@ export const getStrategy = (modelConfig: ModelConfig | undefined = undefined) =>
strategy += params.precision === 'int8' ? 'fp32i8' : 'fp32'; strategy += params.precision === 'int8' ? 'fp32i8' : 'fp32';
break; break;
case 'WebGPU': case 'WebGPU':
case 'WebGPU (Python)':
strategy += params.precision === 'nf4' ? 'fp16i4' : params.precision === 'int8' ? 'fp16i8' : 'fp16'; strategy += params.precision === 'nf4' ? 'fp16i4' : params.precision === 'int8' ? 'fp16i8' : 'fp16';
break; break;
case 'CUDA': case 'CUDA':
@ -307,7 +308,7 @@ export function getServerRoot(defaultLocalPort: number, isCore: boolean = false)
const coreCustomApiUrl = commonStore.settings.coreApiUrl.trim().replace(/\/$/, ''); const coreCustomApiUrl = commonStore.settings.coreApiUrl.trim().replace(/\/$/, '');
if (isCore && coreCustomApiUrl) if (isCore && coreCustomApiUrl)
return coreCustomApiUrl; return coreCustomApiUrl;
const defaultRoot = `http://127.0.0.1:${defaultLocalPort}`; const defaultRoot = `http://127.0.0.1:${defaultLocalPort}`;
if (commonStore.status.status !== ModelStatus.Offline) if (commonStore.status.status !== ModelStatus.Offline)
return defaultRoot; return defaultRoot;

View File

@ -16,6 +16,8 @@ export function ConvertModel(arg1:string,arg2:string,arg3:string,arg4:string):Pr
export function ConvertSafetensors(arg1:string,arg2:string):Promise<string>; export function ConvertSafetensors(arg1:string,arg2:string):Promise<string>;
export function ConvertSafetensorsWithPython(arg1:string,arg2:string,arg3:string):Promise<string>;
export function CopyFile(arg1:string,arg2:string):Promise<void>; export function CopyFile(arg1:string,arg2:string):Promise<void>;
export function DeleteFile(arg1:string):Promise<void>; export function DeleteFile(arg1:string):Promise<void>;
@ -64,7 +66,7 @@ export function SaveJson(arg1:string,arg2:any):Promise<void>;
export function StartFile(arg1:string):Promise<void>; export function StartFile(arg1:string):Promise<void>;
export function StartServer(arg1:string,arg2:number,arg3:string,arg4:boolean,arg5:boolean,arg6:boolean):Promise<string>; export function StartServer(arg1:string,arg2:number,arg3:string,arg4:boolean,arg5:boolean,arg6:boolean,arg7:boolean):Promise<string>;
export function StartWebGPUServer(arg1:number,arg2:string):Promise<string>; export function StartWebGPUServer(arg1:number,arg2:string):Promise<string>;

View File

@ -30,6 +30,10 @@ export function ConvertSafetensors(arg1, arg2) {
return window['go']['backend_golang']['App']['ConvertSafetensors'](arg1, arg2); return window['go']['backend_golang']['App']['ConvertSafetensors'](arg1, arg2);
} }
export function ConvertSafetensorsWithPython(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['ConvertSafetensorsWithPython'](arg1, arg2, arg3);
}
export function CopyFile(arg1, arg2) { export function CopyFile(arg1, arg2) {
return window['go']['backend_golang']['App']['CopyFile'](arg1, arg2); return window['go']['backend_golang']['App']['CopyFile'](arg1, arg2);
} }
@ -126,8 +130,8 @@ export function StartFile(arg1) {
return window['go']['backend_golang']['App']['StartFile'](arg1); return window['go']['backend_golang']['App']['StartFile'](arg1);
} }
export function StartServer(arg1, arg2, arg3, arg4, arg5, arg6) { export function StartServer(arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3, arg4, arg5, arg6); return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3, arg4, arg5, arg6, arg7);
} }
export function StartWebGPUServer(arg1, arg2) { export function StartWebGPUServer(arg1, arg2) {