This commit is contained in:
josc146
2023-12-14 18:37:07 +08:00
parent 01c95f5bc4
commit 0ddd2e9fea
16 changed files with 155 additions and 34 deletions

View File

@@ -30,6 +30,33 @@ def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=
if "state_dict" in loaded:
loaded = loaded["state_dict"]
kk = list(loaded.keys())
version = 4
for x in kk:
if "ln_x" in x:
version = max(5, version)
if "gate.weight" in x:
version = max(5.1, version)
if int(version) == 5 and "att.time_decay" in x:
if len(loaded[x].shape) > 1:
if loaded[x].shape[1] > 1:
version = max(5.2, version)
if "time_maa" in x:
version = max(6, version)
if version == 5.1 and "midi" in pt_filename.lower():
import numpy as np
np.set_printoptions(precision=4, suppress=True, linewidth=200)
kk = list(loaded.keys())
_, n_emb = loaded["emb.weight"].shape
for k in kk:
if "time_decay" in k or "time_faaaa" in k:
# print(k, mm[k].shape)
loaded[k] = (
loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
)
loaded = {k: v.clone().half() for k, v in loaded.items()}
# for k, v in loaded.items():
# print(f'{k}\t{v.shape}\t{v.dtype}')

View File

@@ -37,6 +37,11 @@ def get_args(args: Union[Sequence[str], None] = None):
action="store_true",
help="whether to use rwkv.cpp (default: False)",
)
group.add_argument(
"--webgpu",
action="store_true",
help="whether to use webgpu (default: False)",
)
args = parser.parse_args(args)
return args

View File

@@ -8,7 +8,6 @@ import base64
from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel, Field
import numpy as np
import tiktoken
from utils.rwkv import *
from utils.log import quick_log
@@ -396,6 +395,8 @@ class EmbeddingsBody(BaseModel):
def embedding_base64(embedding: List[float]) -> str:
import numpy as np
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")

View File

@@ -87,18 +87,34 @@ def add_state(body: AddStateBody):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
import numpy as np
try:
devices: List[torch.device] = []
state: Union[Any, None] = None
if body.state is not None:
if type(body.state) == list or type(body.state) == np.ndarray:
devices = [
(
tensor.device
if hasattr(tensor, "device")
else torch.device("cpu")
)
for tensor in body.state
]
state = (
[tensor.cpu() for tensor in body.state]
if hasattr(body.state[0], "device")
else copy.deepcopy(body.state)
)
else:
pass # WebGPU
id: int = trie.insert(body.prompt)
devices: List[torch.device] = [
(tensor.device if hasattr(tensor, "device") else torch.device("cpu"))
for tensor in body.state
]
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"state": [tensor.cpu() for tensor in body.state]
if hasattr(body.state[0], "device")
else copy.deepcopy(body.state),
"state": state,
"logits": copy.deepcopy(body.logits),
"devices": devices,
}
@@ -174,6 +190,7 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
import numpy as np
id = -1
try:
@@ -185,14 +202,16 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
v = dtrie[id]
devices: List[torch.device] = v["devices"]
prompt: str = trie[id]
state: Union[Any, None] = v["state"]
if state is not None and type(state) == list and hasattr(state[0], "device"):
state = [tensor.to(devices[i]) for i, tensor in enumerate(state)]
quick_log(request, body, "Hit:\n" + prompt)
return {
"prompt": prompt,
"tokens": v["tokens"],
"state": [tensor.to(devices[i]) for i, tensor in enumerate(v["state"])]
if hasattr(v["state"][0], "device")
else v["state"],
"state": state,
"logits": v["logits"],
}
else:

View File

@@ -84,6 +84,8 @@ class PIPELINE:
return e / e.sum(axis=axis, keepdims=True)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
if type(logits) == list:
logits = np.array(logits)
np_logits = type(logits) == np.ndarray
if np_logits:
probs = self.np_softmax(logits, axis=-1)

21
backend-python/rwkv_pip/webgpu/model.py vendored Normal file
View File

@@ -0,0 +1,21 @@
from typing import Any, List, Union
try:
import web_rwkv_py as wrp
except ModuleNotFoundError:
try:
from . import web_rwkv_py as wrp
except ImportError:
raise ModuleNotFoundError(
"web_rwkv_py not found, install it from https://github.com/cryscan/web-rwkv-py"
)
class RWKV:
def __init__(self, model_path: str, strategy=None):
self.model = wrp.v5.Model(model_path, turbo=False)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * wrp.peek_info(model_path).num_vocab
def forward(self, tokens: List[int], state: Union[Any, None] = None):
return wrp.v5.run_one(self.model, tokens, state)

View File

@@ -8,7 +8,6 @@ from typing import Dict, Iterable, List, Tuple, Union, Type
from utils.log import quick_log
from fastapi import HTTPException
from pydantic import BaseModel, Field
import numpy as np
from routes import state_cache
import global_var
@@ -68,6 +67,8 @@ class AbstractRWKV(ABC):
pass
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
import numpy as np
if fast_mode:
embedding, token_len = self.__fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
@@ -222,6 +223,8 @@ class AbstractRWKV(ABC):
def generate(
self, prompt: str, stop: Union[str, List[str], None] = None
) -> Iterable[Tuple[str, str, int, int]]:
import numpy as np
quick_log(None, None, "Generation Prompt:\n" + prompt)
cache = None
delta_prompt = prompt
@@ -231,7 +234,7 @@ class AbstractRWKV(ABC):
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
if cache is None or cache["prompt"] == "" or cache["state"] is None:
self.model_state = None
self.model_tokens = []
else:
@@ -511,6 +514,7 @@ def get_tokenizer(tokenizer_len: int):
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
webgpu = global_var.get(global_var.Args).webgpu
if "midi" in model.lower() or "abc" in model.lower():
os.environ["RWKV_RESCALE_LAYER"] = "999"
@@ -526,6 +530,11 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
from rwkv_pip.cpp.model import (
RWKV as Model,
)
elif webgpu:
print("Using webgpu")
from rwkv_pip.webgpu.model import (
RWKV as Model,
)
else:
from rwkv_pip.model import (
RWKV as Model,