add support for MIDI RWKV
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import os
|
||||
import pathlib
|
||||
import copy
|
||||
@@ -18,8 +19,8 @@ END_OF_LINE_DOUBLE = 535
|
||||
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
|
||||
|
||||
|
||||
class RWKV:
|
||||
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
|
||||
class AbstractRWKV(ABC):
|
||||
def __init__(self, model: str, strategy: str, tokens_path: str):
|
||||
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
|
||||
|
||||
filename, _ = os.path.splitext(os.path.basename(model))
|
||||
@@ -29,90 +30,39 @@ class RWKV:
|
||||
self.model_state = None
|
||||
self.model_tokens = []
|
||||
|
||||
self.CHUNK_LEN = 256
|
||||
|
||||
self.max_tokens_per_generation = 500
|
||||
self.temperature = 1
|
||||
self.top_p = 0.5
|
||||
self.penalty_alpha_presence = 0.4
|
||||
self.penalty_alpha_frequency = 0.4
|
||||
self.top_p = 0.3
|
||||
self.top_k = 0
|
||||
self.penalty_alpha_presence = 0
|
||||
self.penalty_alpha_frequency = 1
|
||||
|
||||
self.interface = ":"
|
||||
if "world" in self.name.lower():
|
||||
self.user = "Question"
|
||||
self.bot = "Answer"
|
||||
self.END_OF_LINE = 11
|
||||
else:
|
||||
self.user = "Bob"
|
||||
self.bot = "Alice"
|
||||
self.END_OF_LINE = 187
|
||||
@abstractmethod
|
||||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||||
pass
|
||||
|
||||
self.AVOID_REPEAT_TOKENS = []
|
||||
AVOID_REPEAT = ",:?!"
|
||||
for i in AVOID_REPEAT:
|
||||
dd = self.pipeline.encode(i)
|
||||
assert len(dd) == 1
|
||||
self.AVOID_REPEAT_TOKENS += dd
|
||||
|
||||
self.preload()
|
||||
|
||||
def preload(self):
|
||||
interface = self.interface
|
||||
user = self.user
|
||||
bot = self.bot
|
||||
preset_system = (
|
||||
f"""
|
||||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||||
{bot} is very intelligent, creative and friendly. \
|
||||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
if self.user == "Bob"
|
||||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
prompt=preset_system,
|
||||
tokens=self.model_tokens,
|
||||
state=self.model_state,
|
||||
logits=logits,
|
||||
)
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
@abstractmethod
|
||||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||||
pass
|
||||
|
||||
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
|
||||
def fix_tokens(self, tokens):
|
||||
if "world" in self.name.lower():
|
||||
return tokens
|
||||
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
|
||||
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
|
||||
return tokens
|
||||
@abstractmethod
|
||||
def fix_tokens(self, tokens) -> List[int]:
|
||||
pass
|
||||
|
||||
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
|
||||
tokens = [int(x) for x in _tokens]
|
||||
token_len = len(tokens)
|
||||
self.model_tokens += tokens
|
||||
@abstractmethod
|
||||
def run_rnn(
|
||||
self, _tokens: List[str], newline_adj: int = 0
|
||||
) -> Tuple[List[float], int]:
|
||||
pass
|
||||
|
||||
while len(tokens) > 0:
|
||||
out, self.model_state = self.model.forward(
|
||||
tokens[: self.CHUNK_LEN], self.model_state
|
||||
)
|
||||
tokens = tokens[self.CHUNK_LEN :]
|
||||
|
||||
out[self.END_OF_LINE] += newline_adj # adjust \n probability
|
||||
|
||||
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
|
||||
out[self.model_tokens[-1]] = -999999999
|
||||
return out, token_len
|
||||
@abstractmethod
|
||||
def delta_postprocess(self, delta: str) -> str:
|
||||
pass
|
||||
|
||||
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
|
||||
if fast_mode:
|
||||
embedding, token_len = self.fast_embedding(
|
||||
embedding, token_len = self.__fast_embedding(
|
||||
self.fix_tokens(self.pipeline.encode(input)), None
|
||||
)
|
||||
else:
|
||||
@@ -123,7 +73,7 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
embedding = (embedding / np.linalg.norm(embedding)).tolist()
|
||||
return embedding, token_len
|
||||
|
||||
def fast_embedding(self, tokens: List[str], state):
|
||||
def __fast_embedding(self, tokens: List[str], state):
|
||||
tokens = [int(x) for x in tokens]
|
||||
token_len = len(tokens)
|
||||
self = self.model
|
||||
@@ -260,7 +210,9 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
|
||||
return state[0].tolist(), token_len
|
||||
|
||||
def generate(self, prompt: str, stop: str = None):
|
||||
def generate(
|
||||
self, prompt: str, stop: str | List[str] = None
|
||||
) -> Iterable[Tuple[str, str, int, int]]:
|
||||
quick_log(None, None, "Generation Prompt:\n" + prompt)
|
||||
cache = None
|
||||
delta_prompt = prompt
|
||||
@@ -304,28 +256,23 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
completion_token_len = 0
|
||||
response = ""
|
||||
for i in range(self.max_tokens_per_generation):
|
||||
for n in occurrence:
|
||||
logits[n] -= (
|
||||
self.penalty_alpha_presence
|
||||
+ occurrence[n] * self.penalty_alpha_frequency
|
||||
)
|
||||
self.adjust_forward_logits(logits, occurrence, i)
|
||||
|
||||
token = self.pipeline.sample_logits(
|
||||
logits, temperature=self.temperature, top_p=self.top_p
|
||||
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
|
||||
)
|
||||
|
||||
if token == END_OF_TEXT:
|
||||
yield response, "", prompt_token_len, completion_token_len
|
||||
break
|
||||
for xxx in occurrence:
|
||||
occurrence[xxx] *= 0.996
|
||||
if token not in occurrence:
|
||||
occurrence[token] = 1
|
||||
else:
|
||||
occurrence[token] += 1
|
||||
|
||||
self.adjust_occurrence(occurrence, token)
|
||||
|
||||
logits, _ = self.run_rnn([token])
|
||||
completion_token_len = completion_token_len + 1
|
||||
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
|
||||
delta: str = self.delta_postprocess(
|
||||
self.pipeline.decode(self.model_tokens[out_last:])
|
||||
)
|
||||
if "\ufffd" not in delta: # avoid utf-8 display issues
|
||||
response += delta
|
||||
if stop is not None:
|
||||
@@ -360,6 +307,153 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
yield response, delta, prompt_token_len, completion_token_len
|
||||
|
||||
|
||||
class TextRWKV(AbstractRWKV):
|
||||
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
|
||||
super().__init__(model, strategy, tokens_path)
|
||||
|
||||
self.CHUNK_LEN = 256
|
||||
|
||||
self.max_tokens_per_generation = 500
|
||||
self.temperature = 1
|
||||
self.top_p = 0.3
|
||||
self.top_k = 0
|
||||
self.penalty_alpha_presence = 0
|
||||
self.penalty_alpha_frequency = 1
|
||||
|
||||
self.interface = ":"
|
||||
if "world" in self.name.lower():
|
||||
self.user = "Question"
|
||||
self.bot = "Answer"
|
||||
self.END_OF_LINE = 11
|
||||
else:
|
||||
self.user = "Bob"
|
||||
self.bot = "Alice"
|
||||
self.END_OF_LINE = 187
|
||||
|
||||
self.AVOID_REPEAT_TOKENS = []
|
||||
AVOID_REPEAT = ",:?!"
|
||||
for i in AVOID_REPEAT:
|
||||
dd = self.pipeline.encode(i)
|
||||
assert len(dd) == 1
|
||||
self.AVOID_REPEAT_TOKENS += dd
|
||||
|
||||
self.__preload()
|
||||
|
||||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||||
for xxx in occurrence:
|
||||
occurrence[xxx] *= 0.996
|
||||
if token not in occurrence:
|
||||
occurrence[token] = 1
|
||||
else:
|
||||
occurrence[token] += 1
|
||||
|
||||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||||
for n in occurrence:
|
||||
logits[n] -= (
|
||||
self.penalty_alpha_presence
|
||||
+ occurrence[n] * self.penalty_alpha_frequency
|
||||
)
|
||||
|
||||
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
|
||||
def fix_tokens(self, tokens) -> List[int]:
|
||||
if "world" in self.name.lower():
|
||||
return tokens
|
||||
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
|
||||
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
|
||||
return tokens
|
||||
|
||||
def run_rnn(
|
||||
self, _tokens: List[str], newline_adj: int = 0
|
||||
) -> Tuple[List[float], int]:
|
||||
tokens = [int(x) for x in _tokens]
|
||||
token_len = len(tokens)
|
||||
self.model_tokens += tokens
|
||||
|
||||
while len(tokens) > 0:
|
||||
out, self.model_state = self.model.forward(
|
||||
tokens[: self.CHUNK_LEN], self.model_state
|
||||
)
|
||||
tokens = tokens[self.CHUNK_LEN :]
|
||||
|
||||
out[self.END_OF_LINE] += newline_adj # adjust \n probability
|
||||
|
||||
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
|
||||
out[self.model_tokens[-1]] = -999999999
|
||||
return out, token_len
|
||||
|
||||
def delta_postprocess(self, delta: str) -> str:
|
||||
return delta
|
||||
|
||||
def __preload(self):
|
||||
interface = self.interface
|
||||
user = self.user
|
||||
bot = self.bot
|
||||
preset_system = (
|
||||
f"""
|
||||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||||
{bot} is very intelligent, creative and friendly. \
|
||||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
if self.user == "Bob"
|
||||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
prompt=preset_system,
|
||||
tokens=self.model_tokens,
|
||||
state=self.model_state,
|
||||
logits=logits,
|
||||
)
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
|
||||
|
||||
class MusicRWKV(AbstractRWKV):
|
||||
def __init__(self, model: str, strategy: str, tokens_path: str):
|
||||
super().__init__(model, strategy, tokens_path)
|
||||
|
||||
self.max_tokens_per_generation = 500
|
||||
self.temperature = 1
|
||||
self.top_p = 0.8
|
||||
self.top_k = 8
|
||||
|
||||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||||
for n in occurrence:
|
||||
occurrence[n] *= 0.997 #### decay repetition penalty
|
||||
if token >= 128 or token == 127:
|
||||
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
|
||||
else:
|
||||
occurrence[token] = 0.3 + (occurrence[token] if token in occurrence else 0)
|
||||
|
||||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||||
for n in occurrence:
|
||||
logits[n] -= 0 + occurrence[n] * 0.5
|
||||
|
||||
logits[0] += (i - 2000) / 500 # try not to be too short or too long
|
||||
logits[127] -= 1 # avoid "t125"
|
||||
|
||||
def fix_tokens(self, tokens) -> List[int]:
|
||||
return tokens
|
||||
|
||||
def run_rnn(
|
||||
self, _tokens: List[str], newline_adj: int = 0
|
||||
) -> Tuple[List[float], int]:
|
||||
tokens = [int(x) for x in _tokens]
|
||||
token_len = len(tokens)
|
||||
self.model_tokens += tokens
|
||||
out, self.model_state = self.model.forward(tokens, self.model_state)
|
||||
return out, token_len
|
||||
|
||||
def delta_postprocess(self, delta: str) -> str:
|
||||
return " " + delta
|
||||
|
||||
|
||||
class ModelConfigBody(BaseModel):
|
||||
max_tokens: int = Field(default=None, gt=0, le=102400)
|
||||
temperature: float = Field(default=None, ge=0, le=2)
|
||||
@@ -379,7 +473,7 @@ class ModelConfigBody(BaseModel):
|
||||
}
|
||||
|
||||
|
||||
def set_rwkv_config(model: RWKV, body: ModelConfigBody):
|
||||
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
|
||||
if body.max_tokens is not None:
|
||||
model.max_tokens_per_generation = body.max_tokens
|
||||
if body.temperature is not None:
|
||||
@@ -395,7 +489,7 @@ def set_rwkv_config(model: RWKV, body: ModelConfigBody):
|
||||
model.penalty_alpha_frequency = body.frequency_penalty
|
||||
|
||||
|
||||
def get_rwkv_config(model: RWKV) -> ModelConfigBody:
|
||||
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
|
||||
return ModelConfigBody(
|
||||
max_tokens=model.max_tokens_per_generation,
|
||||
temperature=model.temperature,
|
||||
|
||||
Reference in New Issue
Block a user