upgrade rwkv 0.8.16 (DirectML support; rwkv 5.2 no longer needs to ensure custom cuda kernel enabled)
This commit is contained in:
parent
2acdaa96b2
commit
0331bf47f7
Binary file not shown.
124
backend-python/rwkv_pip/cuda/att_one.cu
vendored
124
backend-python/rwkv_pip/cuda/att_one.cu
vendored
@ -1,124 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#include "element_wise.h"
|
|
||||||
#include "util.h"
|
|
||||||
|
|
||||||
// Equivalent Python code:
|
|
||||||
// ww = t_first + k
|
|
||||||
// p = torch.maximum(pp, ww)
|
|
||||||
// e1 = torch.exp(pp - p)
|
|
||||||
// e2 = torch.exp(ww - p)
|
|
||||||
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
// ww = t_decay + pp
|
|
||||||
// p = torch.maximum(ww, k)
|
|
||||||
// e1 = torch.exp(ww - p)
|
|
||||||
// e2 = torch.exp(k - p)
|
|
||||||
// t1 = e1 * aa + e2 * v
|
|
||||||
// t2 = e1 * bb + e2
|
|
||||||
// r = r * wkv
|
|
||||||
// return t1, t2, p, r
|
|
||||||
struct WkvForwardOne {
|
|
||||||
const float *t_first;
|
|
||||||
const float *k;
|
|
||||||
const float *pp;
|
|
||||||
const float *aa;
|
|
||||||
const float *bb;
|
|
||||||
const float *t_decay;
|
|
||||||
const float *v;
|
|
||||||
/* out */ float *t1;
|
|
||||||
/* out */ float *t2;
|
|
||||||
/* out */ float *p;
|
|
||||||
/* in & out */ half *r;
|
|
||||||
|
|
||||||
__device__ void operator()(int i) const {
|
|
||||||
float ww = t_first[i] + k[i];
|
|
||||||
float pp_ = pp[i];
|
|
||||||
float p_ = (pp_ > ww) ? pp_ : ww;
|
|
||||||
float e1 = expf(pp_ - p_);
|
|
||||||
float e2 = expf(ww - p_);
|
|
||||||
float aa_ = aa[i];
|
|
||||||
float bb_ = bb[i];
|
|
||||||
float v_ = v[i];
|
|
||||||
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
|
|
||||||
ww = t_decay[i] + pp_;
|
|
||||||
float k_ = k[i];
|
|
||||||
p_ = (ww > k_) ? ww : k_;
|
|
||||||
e1 = expf(ww - p_);
|
|
||||||
e2 = expf(k_ - p_);
|
|
||||||
t1[i] = e1 * aa_ + e2 * v_;
|
|
||||||
t2[i] = e1 * bb_ + e2;
|
|
||||||
p[i] = p_;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
*/
|
|
||||||
|
|
||||||
struct Mix {
|
|
||||||
const half *xx;
|
|
||||||
const half *sx;
|
|
||||||
const half *k_mix;
|
|
||||||
const half *v_mix;
|
|
||||||
const half *r_mix;
|
|
||||||
/* out */ half *kx;
|
|
||||||
/* out */ half *vx;
|
|
||||||
/* out */ half *rx;
|
|
||||||
|
|
||||||
__device__ void operator()(int i) const {
|
|
||||||
half xx_ = xx[i];
|
|
||||||
half sx_ = sx[i];
|
|
||||||
half k_mix_ = k_mix[i];
|
|
||||||
half v_mix_ = v_mix[i];
|
|
||||||
half r_mix_ = r_mix[i];
|
|
||||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
|
||||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
|
|
||||||
|
|
||||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
|
||||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
|
||||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
|
||||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
|
||||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
|
||||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
|
||||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
|
||||||
/* out */ Tensor t2, /* out */ Tensor p) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
|
||||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
|
||||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
|
||||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
|
||||||
x.numel());
|
|
||||||
|
|
||||||
gemm_fp16_cublas(kx, kw, k);
|
|
||||||
gemm_fp16_cublas(vx, vw, v);
|
|
||||||
gemm_fp16_cublas(rx, rw, r);
|
|
||||||
at::sigmoid_(r);
|
|
||||||
|
|
||||||
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
|
|
||||||
data_ptr<float>(pp), data_ptr<float>(aa),
|
|
||||||
data_ptr<float>(bb), data_ptr<float>(t_decay),
|
|
||||||
data_ptr<float>(v), data_ptr<float>(t1),
|
|
||||||
data_ptr<float>(t2), data_ptr<float>(p),
|
|
||||||
data_ptr<half>(r)},
|
|
||||||
x.numel());
|
|
||||||
|
|
||||||
gemm_fp16_cublas(r, ow, x_plus_out);
|
|
||||||
x_plus_out += x;
|
|
||||||
return xx;
|
|
||||||
}
|
|
179
backend-python/rwkv_pip/cuda/att_seq.cu
vendored
179
backend-python/rwkv_pip/cuda/att_seq.cu
vendored
@ -1,179 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#include "util.h"
|
|
||||||
#include "element_wise.h"
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
|
|
||||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
|
|
||||||
int n, int k, bool output_fp32);
|
|
||||||
|
|
||||||
// based on `kernel_wkv_forward`, fusing more operations
|
|
||||||
__global__ void kernel_wkv_forward_new(
|
|
||||||
const int B, const int T, const int C, const float *__restrict__ const _w,
|
|
||||||
const float *__restrict__ const _u, const float *__restrict__ const _k,
|
|
||||||
const float *__restrict__ const _v, const half *__restrict__ const r,
|
|
||||||
half *__restrict__ const _y, float *__restrict__ const _aa,
|
|
||||||
float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
|
||||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const int _b = idx / C;
|
|
||||||
const int _c = idx % C;
|
|
||||||
const int _offset = _b * T * C + _c;
|
|
||||||
const int _state_offset = _b * C + _c;
|
|
||||||
|
|
||||||
float u = _u[_c];
|
|
||||||
float w = _w[_c];
|
|
||||||
const float *__restrict__ const k = _k + _offset;
|
|
||||||
const float *__restrict__ const v = _v + _offset;
|
|
||||||
half *__restrict__ const y = _y + _offset;
|
|
||||||
|
|
||||||
float aa = _aa[_state_offset];
|
|
||||||
float bb = _bb[_state_offset];
|
|
||||||
float pp = _pp[_state_offset];
|
|
||||||
for (int i = 0; i < T; i++) {
|
|
||||||
const int ii = i * C;
|
|
||||||
const float kk = k[ii];
|
|
||||||
const float vv = v[ii];
|
|
||||||
float ww = u + kk;
|
|
||||||
float p = max(pp, ww);
|
|
||||||
float e1 = exp(pp - p);
|
|
||||||
float e2 = exp(ww - p);
|
|
||||||
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
|
||||||
ww = w + pp;
|
|
||||||
p = max(ww, kk);
|
|
||||||
e1 = exp(ww - p);
|
|
||||||
e2 = exp(kk - p);
|
|
||||||
aa = e1 * aa + e2 * vv;
|
|
||||||
bb = e1 * bb + e2;
|
|
||||||
pp = p;
|
|
||||||
}
|
|
||||||
_aa[_state_offset] = aa;
|
|
||||||
_bb[_state_offset] = bb;
|
|
||||||
_pp[_state_offset] = pp;
|
|
||||||
}
|
|
||||||
|
|
||||||
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
|
|
||||||
float *v, half *r, half *y, float *aa, float *bb,
|
|
||||||
float *pp) {
|
|
||||||
dim3 threadsPerBlock(min(C, 32));
|
|
||||||
assert(B * C % threadsPerBlock.x == 0);
|
|
||||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
|
||||||
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
|
|
||||||
y, aa, bb, pp);
|
|
||||||
}
|
|
||||||
|
|
||||||
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *v_mix, const half *r_mix,
|
|
||||||
const int outer_size, const int inner_size, half *kx,
|
|
||||||
half *vx, half *rx) {
|
|
||||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
|
||||||
idx2 += blockDim.x * gridDim.x) {
|
|
||||||
half k_mix_ = k_mix[idx2];
|
|
||||||
half v_mix_ = v_mix[idx2];
|
|
||||||
half r_mix_ = r_mix[idx2];
|
|
||||||
for (int row = 0; row < outer_size; ++row) {
|
|
||||||
int idx1 = row * inner_size + idx2;
|
|
||||||
half xx_ = xx[idx1];
|
|
||||||
half sx_ = sx[idx1];
|
|
||||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
|
||||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void att_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *v_mix, const half *r_mix, const int outer_size,
|
|
||||||
const int inner_size, half *kx, half *vx, half *rx) {
|
|
||||||
// 256 is good enough on most GPUs
|
|
||||||
const int32_t BLOCK_SIZE = 256;
|
|
||||||
assert(inner_size % BLOCK_SIZE == 0);
|
|
||||||
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
||||||
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct InplaceSigmoid {
|
|
||||||
__device__ __forceinline__ half operator()(int i) const {
|
|
||||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
|
||||||
}
|
|
||||||
half *ptr;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct InplaceMul {
|
|
||||||
__device__ __forceinline__ half operator()(int i) const {
|
|
||||||
y[i] = __hmul(x[i], y[i]);
|
|
||||||
}
|
|
||||||
half *y;
|
|
||||||
half *x;
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
vx = xx * v_mix + sx * (1 - v_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(gemm(rx, rw))
|
|
||||||
k = gemm(kx, kw, output_dtype=torch.float32)
|
|
||||||
v = gemm(vx, vw, output_dtype=torch.float32)
|
|
||||||
|
|
||||||
T = x.shape[0]
|
|
||||||
for t in range(T):
|
|
||||||
kk = k[t]
|
|
||||||
vv = v[t]
|
|
||||||
ww = t_first + kk
|
|
||||||
p = torch.maximum(pp, ww)
|
|
||||||
e1 = torch.exp(pp - p)
|
|
||||||
e2 = torch.exp(ww - p)
|
|
||||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
|
||||||
ww = t_decay + pp
|
|
||||||
p = torch.maximum(ww, kk)
|
|
||||||
e1 = torch.exp(ww - p)
|
|
||||||
e2 = torch.exp(kk - p)
|
|
||||||
aa = e1 * aa + e2 * vv
|
|
||||||
bb = e1 * bb + e2
|
|
||||||
pp = p
|
|
||||||
out = gemm(r * sx, ow)
|
|
||||||
return x + out, xx[-1,:], aa, bb, pp
|
|
||||||
*/
|
|
||||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
|
||||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
|
||||||
char* buf_ptr = (char*)buf.data_ptr();
|
|
||||||
half* kx = (half*)buf_ptr;
|
|
||||||
half* vx = kx + x.numel();
|
|
||||||
half* rx = vx + x.numel();
|
|
||||||
half* wkv_y = rx + x.numel();
|
|
||||||
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
|
||||||
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
|
|
||||||
kx, vx, rx);
|
|
||||||
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
|
|
||||||
float* v = k + x.size(0) * kw.size(1);
|
|
||||||
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
|
|
||||||
|
|
||||||
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
|
|
||||||
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
|
|
||||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
|
|
||||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
|
||||||
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
|
|
||||||
data_ptr<float>(t_first), k, v, r,
|
|
||||||
wkv_y, data_ptr<float>(aa),
|
|
||||||
data_ptr<float>(bb), data_ptr<float>(pp));
|
|
||||||
element_wise(InplaceMul{wkv_y, r}, x.numel());
|
|
||||||
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
|
|
||||||
x_plus_out += x;
|
|
||||||
return xx;
|
|
||||||
}
|
|
21
backend-python/rwkv_pip/cuda/element_wise.h
vendored
21
backend-python/rwkv_pip/cuda/element_wise.h
vendored
@ -1,21 +0,0 @@
|
|||||||
#include <cassert>
|
|
||||||
#include <cstddef>
|
|
||||||
#include <cstdint>
|
|
||||||
|
|
||||||
template <typename Func> __global__ void _element_wise(Func func, int n) {
|
|
||||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
|
|
||||||
i += blockDim.x * gridDim.x) {
|
|
||||||
func(i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
|
|
||||||
// (4096 in 7B model and 768 in 0.1B model),
|
|
||||||
// and is not faster than the plain float version.
|
|
||||||
template <typename Func>
|
|
||||||
void element_wise(Func func, int n) {
|
|
||||||
// 256 is good enough on most GPUs
|
|
||||||
const int32_t BLOCK_SIZE = 256;
|
|
||||||
assert(n % BLOCK_SIZE == 0);
|
|
||||||
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
|
|
||||||
}
|
|
165
backend-python/rwkv_pip/cuda/ffn.cu
vendored
165
backend-python/rwkv_pip/cuda/ffn.cu
vendored
@ -1,165 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
#include "element_wise.h"
|
|
||||||
#include "util.h"
|
|
||||||
|
|
||||||
using torch::Tensor;
|
|
||||||
|
|
||||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
|
||||||
int ori_n, int ori_k, bool output_fp32);
|
|
||||||
|
|
||||||
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *r_mix, const int outer_size,
|
|
||||||
const int inner_size, half *kx, half *rx) {
|
|
||||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
|
||||||
idx2 += blockDim.x * gridDim.x) {
|
|
||||||
half k_mix_ = k_mix[idx2];
|
|
||||||
half r_mix_ = r_mix[idx2];
|
|
||||||
for (int row = 0; row < outer_size; ++row) {
|
|
||||||
int idx1 = row * inner_size + idx2;
|
|
||||||
half xx_ = xx[idx1];
|
|
||||||
half sx_ = sx[idx1];
|
|
||||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
|
||||||
const half *r_mix, const int outer_size, const int inner_size,
|
|
||||||
half *kx, half *rx) {
|
|
||||||
// 256 is good enough on most GPUs
|
|
||||||
const int32_t BLOCK_SIZE = 256;
|
|
||||||
assert(inner_size % BLOCK_SIZE == 0);
|
|
||||||
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
||||||
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct InplaceSigmoid {
|
|
||||||
__device__ __forceinline__ void operator()(int i) const {
|
|
||||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
|
||||||
}
|
|
||||||
half *ptr;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct InplaceReLUAndSquare {
|
|
||||||
__device__ __forceinline__ void operator()(int i) const {
|
|
||||||
// __hmax is not defined in old cuda
|
|
||||||
if (__hgt(ptr[i], __float2half(0))) {
|
|
||||||
ptr[i] = __hmul(ptr[i], ptr[i]);
|
|
||||||
} else {
|
|
||||||
ptr[i] = __float2half(0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
half *ptr;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct InplaceFma {
|
|
||||||
__device__ __forceinline__ void operator()(int i) const {
|
|
||||||
a[i] = __hfma(a[i], b[i], c[i]);
|
|
||||||
}
|
|
||||||
half *a;
|
|
||||||
const half *b;
|
|
||||||
const half *c;
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(gemm(rx, rw))
|
|
||||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
|
||||||
out = r * gemm(vx, vw)
|
|
||||||
return x + out, xx[-1,:]
|
|
||||||
*/
|
|
||||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
/* imm */ Tensor buf,
|
|
||||||
/* out */ Tensor x_plus_out) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
|
||||||
char *buf_ptr = (char *)buf.data_ptr();
|
|
||||||
half *kx = (half *)buf_ptr;
|
|
||||||
half *rx = kx + x.numel();
|
|
||||||
half *vx = rx + x.numel();
|
|
||||||
half *r = vx + x.size(0) * kw.size(1);
|
|
||||||
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
|
||||||
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
|
|
||||||
|
|
||||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
|
|
||||||
false);
|
|
||||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
|
||||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
|
|
||||||
false);
|
|
||||||
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
|
|
||||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
|
|
||||||
vw.size(1), vw.size(0), false);
|
|
||||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
|
||||||
x_plus_out.numel());
|
|
||||||
return xx;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct FfnOneMix {
|
|
||||||
__device__ __forceinline__ void operator()(int idx) {
|
|
||||||
half k_mix_ = k_mix[idx];
|
|
||||||
half r_mix_ = r_mix[idx];
|
|
||||||
half xx_ = xx[idx];
|
|
||||||
half sx_ = sx[idx];
|
|
||||||
kx[idx] = __hadd(__hmul(xx_, k_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
|
||||||
rx[idx] = __hadd(__hmul(xx_, r_mix_),
|
|
||||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
|
||||||
}
|
|
||||||
half *k_mix;
|
|
||||||
half *r_mix;
|
|
||||||
half *xx;
|
|
||||||
half *sx;
|
|
||||||
half *kx;
|
|
||||||
half *rx;
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Equivalent Python code:
|
|
||||||
|
|
||||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
|
||||||
kx = xx * k_mix + sx * (1 - k_mix)
|
|
||||||
rx = xx * r_mix + sx * (1 - r_mix)
|
|
||||||
|
|
||||||
r = torch.sigmoid(gemm(rx, rw))
|
|
||||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
|
||||||
out = r * gemm(vx, vw)
|
|
||||||
return x + out, xx
|
|
||||||
*/
|
|
||||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
|
||||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
|
||||||
/* imm */ Tensor buf,
|
|
||||||
/* out */ Tensor x_plus_out) {
|
|
||||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
|
||||||
char *buf_ptr = (char *)buf.data_ptr();
|
|
||||||
half *kx = (half *)buf_ptr;
|
|
||||||
half *rx = kx + x.numel();
|
|
||||||
half *vx = rx + x.numel();
|
|
||||||
half *r = vx + x.size(0) * kw.size(1);
|
|
||||||
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
|
|
||||||
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
|
|
||||||
x.numel());
|
|
||||||
// vector * matrix, so m = 1
|
|
||||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
|
|
||||||
element_wise(InplaceSigmoid{r}, rw.size(1));
|
|
||||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
|
|
||||||
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
|
|
||||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
|
|
||||||
vw.size(0), false);
|
|
||||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
|
||||||
x_plus_out.numel());
|
|
||||||
return xx;
|
|
||||||
}
|
|
7
backend-python/rwkv_pip/cuda/util.h
vendored
7
backend-python/rwkv_pip/cuda/util.h
vendored
@ -1,7 +0,0 @@
|
|||||||
#include "ATen/ATen.h"
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
|
|
||||||
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
|
|
||||||
template <> inline half *data_ptr(torch::Tensor x) {
|
|
||||||
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
|
|
||||||
}
|
|
130
backend-python/rwkv_pip/model.py
vendored
130
backend-python/rwkv_pip/model.py
vendored
@ -220,7 +220,7 @@ class RWKV(MyModule):
|
|||||||
else:
|
else:
|
||||||
prxxx = lambda *args, **kwargs: None
|
prxxx = lambda *args, **kwargs: None
|
||||||
|
|
||||||
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
|
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps|dml) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
|
||||||
if not re.match(STRATEGY_REGEX, strategy):
|
if not re.match(STRATEGY_REGEX, strategy):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Invalid strategy. Please read https://pypi.org/project/rwkv/"
|
"Invalid strategy. Please read https://pypi.org/project/rwkv/"
|
||||||
@ -372,6 +372,10 @@ class RWKV(MyModule):
|
|||||||
strategy[n].atype = s[i][1][0]
|
strategy[n].atype = s[i][1][0]
|
||||||
strategy[n].wtype = s[i][1][1]
|
strategy[n].wtype = s[i][1][1]
|
||||||
strategy[n].stream = False
|
strategy[n].stream = False
|
||||||
|
if strategy[n].device == "dml":
|
||||||
|
import torch_directml
|
||||||
|
|
||||||
|
strategy[n].device = torch_directml.device()
|
||||||
if i == stream_i and n >= (plan[i] - stream_count):
|
if i == stream_i and n >= (plan[i] - stream_count):
|
||||||
strategy[n].stream = True
|
strategy[n].stream = True
|
||||||
break
|
break
|
||||||
@ -577,10 +581,7 @@ class RWKV(MyModule):
|
|||||||
prxxx(f"Converted and saved. Now this will exit.")
|
prxxx(f"Converted and saved. Now this will exit.")
|
||||||
exit(0)
|
exit(0)
|
||||||
|
|
||||||
if self.version == 5.2:
|
if self.version == 5.2 and os.environ["RWKV_CUDA_ON"] == "1":
|
||||||
assert (
|
|
||||||
os.environ["RWKV_CUDA_ON"] == "1"
|
|
||||||
), "Please Enable Custom CUDA Kernel. Latest RWKV-5 requires os.environ['RWKV_CUDA_ON'] == '1' (will fix soon)"
|
|
||||||
HEAD_SIZE = args.n_att // args.n_head
|
HEAD_SIZE = args.n_att // args.n_head
|
||||||
if LoadPreCompileLibrary("rwkv5") is True:
|
if LoadPreCompileLibrary("rwkv5") is True:
|
||||||
rwkv5 = torch.ops.rwkv5
|
rwkv5 = torch.ops.rwkv5
|
||||||
@ -1363,6 +1364,7 @@ class RWKV(MyModule):
|
|||||||
|
|
||||||
########################################################################################################
|
########################################################################################################
|
||||||
|
|
||||||
|
@MyFunction
|
||||||
def att_seq_v5_2(
|
def att_seq_v5_2(
|
||||||
self,
|
self,
|
||||||
x,
|
x,
|
||||||
@ -1408,29 +1410,29 @@ class RWKV(MyModule):
|
|||||||
gx = xx * g_mix + sx * (1 - g_mix)
|
gx = xx * g_mix + sx * (1 - g_mix)
|
||||||
|
|
||||||
H = t_decay.shape[0]
|
H = t_decay.shape[0]
|
||||||
N = x.shape[-1] // H
|
S = x.shape[-1] // H
|
||||||
T = x.shape[0]
|
T = x.shape[0]
|
||||||
|
|
||||||
r = gemm(rx, rw, output_dtype=torch.float32)
|
r = gemm(rx, rw, output_dtype=torch.float32).view(T, H, S).transpose(0, 1)
|
||||||
k = gemm(kx, kw, output_dtype=torch.float32)
|
k = (
|
||||||
v = gemm(vx, vw, output_dtype=torch.float32)
|
gemm(kx, kw, output_dtype=torch.float32)
|
||||||
|
.view(T, H, S)
|
||||||
|
.transpose(0, 1)
|
||||||
|
.transpose(-2, -1)
|
||||||
|
)
|
||||||
|
v = gemm(vx, vw, output_dtype=torch.float32).view(T, H, S).transpose(0, 1)
|
||||||
g = F.silu(gemm(gx, gw))
|
g = F.silu(gemm(gx, gw))
|
||||||
|
|
||||||
out, s = self.RUN_RWKV_5(
|
out = torch.empty((T, H, S), dtype=r.dtype, device=r.device)
|
||||||
1,
|
for t in range(T):
|
||||||
T,
|
rt = r[:, t : t + 1, :]
|
||||||
self.args.n_att,
|
kt = k[:, :, t : t + 1]
|
||||||
H,
|
vt = v[:, t : t + 1, :]
|
||||||
s.transpose(-1, -2).contiguous(),
|
at = gemm(kt, vt)
|
||||||
r,
|
out[t] = (rt @ (t_first * at + s)).squeeze(1)
|
||||||
k,
|
s = at + t_decay * s
|
||||||
v,
|
|
||||||
w=t_decay,
|
|
||||||
u=t_first,
|
|
||||||
)
|
|
||||||
s = s.transpose(-1, -2)
|
|
||||||
|
|
||||||
out = out.reshape(T, H * N)
|
out = out.reshape(T, H * S)
|
||||||
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b)
|
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b)
|
||||||
out = out.to(dtype=x.dtype) * g
|
out = out.to(dtype=x.dtype) * g
|
||||||
out = gemm(out, ow)
|
out = gemm(out, ow)
|
||||||
@ -1543,6 +1545,81 @@ class RWKV(MyModule):
|
|||||||
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
|
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
|
||||||
return x + out, xx[-1, :], aa, bb, pp
|
return x + out, xx[-1, :], aa, bb, pp
|
||||||
|
|
||||||
|
# NOTE: decorate with @MyFunction causes JIT error
|
||||||
|
def cuda_att_seq_v5_2(
|
||||||
|
self,
|
||||||
|
x,
|
||||||
|
sx,
|
||||||
|
s,
|
||||||
|
ln_w,
|
||||||
|
ln_b,
|
||||||
|
lx_w,
|
||||||
|
lx_b,
|
||||||
|
k_mix,
|
||||||
|
v_mix,
|
||||||
|
r_mix,
|
||||||
|
g_mix,
|
||||||
|
t_decay,
|
||||||
|
t_first,
|
||||||
|
kw,
|
||||||
|
vw,
|
||||||
|
rw,
|
||||||
|
gw,
|
||||||
|
ow,
|
||||||
|
kmx,
|
||||||
|
krx,
|
||||||
|
kmy,
|
||||||
|
kry,
|
||||||
|
vmx,
|
||||||
|
vrx,
|
||||||
|
vmy,
|
||||||
|
vry,
|
||||||
|
rmx,
|
||||||
|
rrx,
|
||||||
|
rmy,
|
||||||
|
rry,
|
||||||
|
omx,
|
||||||
|
orx,
|
||||||
|
omy,
|
||||||
|
ory,
|
||||||
|
):
|
||||||
|
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||||
|
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
|
||||||
|
kx = xx * k_mix + sx * (1 - k_mix)
|
||||||
|
vx = xx * v_mix + sx * (1 - v_mix)
|
||||||
|
rx = xx * r_mix + sx * (1 - r_mix)
|
||||||
|
gx = xx * g_mix + sx * (1 - g_mix)
|
||||||
|
|
||||||
|
H = t_decay.shape[0]
|
||||||
|
N = x.shape[-1] // H
|
||||||
|
T = x.shape[0]
|
||||||
|
|
||||||
|
r = gemm(rx, rw, output_dtype=torch.float32)
|
||||||
|
k = gemm(kx, kw, output_dtype=torch.float32)
|
||||||
|
v = gemm(vx, vw, output_dtype=torch.float32)
|
||||||
|
g = F.silu(gemm(gx, gw))
|
||||||
|
|
||||||
|
out, s = self.RUN_RWKV_5(
|
||||||
|
1,
|
||||||
|
T,
|
||||||
|
self.args.n_att,
|
||||||
|
H,
|
||||||
|
s.transpose(-1, -2).contiguous(),
|
||||||
|
r,
|
||||||
|
k,
|
||||||
|
v,
|
||||||
|
w=t_decay,
|
||||||
|
u=t_first,
|
||||||
|
)
|
||||||
|
s = s.transpose(-1, -2)
|
||||||
|
|
||||||
|
out = out.reshape(T, H * N)
|
||||||
|
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b)
|
||||||
|
out = out.to(dtype=x.dtype) * g
|
||||||
|
out = gemm(out, ow)
|
||||||
|
|
||||||
|
return x + out, xx[-1, :], s
|
||||||
|
|
||||||
########################################################################################################
|
########################################################################################################
|
||||||
|
|
||||||
def forward(self, tokens, state, full_output=False):
|
def forward(self, tokens, state, full_output=False):
|
||||||
@ -1622,7 +1699,10 @@ class RWKV(MyModule):
|
|||||||
atype = dd.atype
|
atype = dd.atype
|
||||||
wtype = dd.wtype
|
wtype = dd.wtype
|
||||||
if seq_mode:
|
if seq_mode:
|
||||||
if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1":
|
cuda_applicable = os.environ[
|
||||||
|
"RWKV_CUDA_ON"
|
||||||
|
] == "1" and "cuda" in str(dev)
|
||||||
|
if cuda_applicable:
|
||||||
ATT = (
|
ATT = (
|
||||||
self.cuda_att_seq
|
self.cuda_att_seq
|
||||||
if wtype != torch.uint8
|
if wtype != torch.uint8
|
||||||
@ -1636,6 +1716,8 @@ class RWKV(MyModule):
|
|||||||
ATT = self.att_seq_v5_1
|
ATT = self.att_seq_v5_1
|
||||||
elif self.version == 5.2:
|
elif self.version == 5.2:
|
||||||
ATT = self.att_seq_v5_2
|
ATT = self.att_seq_v5_2
|
||||||
|
if cuda_applicable:
|
||||||
|
ATT = self.cuda_att_seq_v5_2
|
||||||
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
|
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
|
||||||
else:
|
else:
|
||||||
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
|
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
|
||||||
|
@ -254,6 +254,5 @@
|
|||||||
"User Name": "ユーザー名",
|
"User Name": "ユーザー名",
|
||||||
"Assistant Name": "アシスタント名",
|
"Assistant Name": "アシスタント名",
|
||||||
"Insert default system prompt at the beginning": "最初にデフォルトのシステムプロンプトを挿入",
|
"Insert default system prompt at the beginning": "最初にデフォルトのシステムプロンプトを挿入",
|
||||||
"Please Enable Custom CUDA Kernel. Latest RWKV-5 requires os.environ['RWKV_CUDA_ON'] == '1' (will fix soon).": "カスタムCUDAカーネルを有効にしてください。最新のRWKV-5ではos.environ['RWKV_CUDA_ON'] == '1'が必要です(近日中に修正します)。",
|
|
||||||
"Format Content": "内容フォーマットの規格化"
|
"Format Content": "内容フォーマットの規格化"
|
||||||
}
|
}
|
@ -254,6 +254,5 @@
|
|||||||
"User Name": "用户名称",
|
"User Name": "用户名称",
|
||||||
"Assistant Name": "AI名称",
|
"Assistant Name": "AI名称",
|
||||||
"Insert default system prompt at the beginning": "在开头自动插入默认系统提示",
|
"Insert default system prompt at the beginning": "在开头自动插入默认系统提示",
|
||||||
"Please Enable Custom CUDA Kernel. Latest RWKV-5 requires os.environ['RWKV_CUDA_ON'] == '1' (will fix soon).": "请启用自定义CUDA算子。最新的RWKV-5需要os.environ['RWKV_CUDA_ON'] == '1' (未来会修复)",
|
|
||||||
"Format Content": "规范格式"
|
"Format Content": "规范格式"
|
||||||
}
|
}
|
@ -212,7 +212,6 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
|
|||||||
'no NVIDIA driver': 'Found no NVIDIA driver, please install the latest driver.',
|
'no NVIDIA driver': 'Found no NVIDIA driver, please install the latest driver.',
|
||||||
'CUDA out of memory': 'VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.',
|
'CUDA out of memory': 'VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.',
|
||||||
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.',
|
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.',
|
||||||
'Please Enable Custom CUDA Kernel': 'Please Enable Custom CUDA Kernel. Latest RWKV-5 requires os.environ[\'RWKV_CUDA_ON\'] == \'1\' (will fix soon).'
|
|
||||||
};
|
};
|
||||||
const matchedError = Object.entries(errorsMap).find(([key, _]) => error.includes(key));
|
const matchedError = Object.entries(errorsMap).find(([key, _]) => error.includes(key));
|
||||||
const message = matchedError ? t(matchedError[1]) : error;
|
const message = matchedError ? t(matchedError[1]) : error;
|
||||||
|
Loading…
Reference in New Issue
Block a user