RWKV-Runner/finetune/lora/v6/fla/modules/l2norm.py

217 lines
6.4 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
import math
import torch
import torch.nn.functional as F
from torch.cuda.amp import custom_fwd, custom_bwd
import triton
import triton.language as tl
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32),
],
key=["N"],
)
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
@triton.jit
def _l2_norm_fwd_1pass_kernel(
X, # pointer to the input
Y, # pointer to the output
stride_x_row, # how much to increase the pointer when moving by 1 row
N, # number of columns in X
eps, # epsilon to avoid division by zero
BLOCK_N: tl.constexpr,
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
X += row * stride_x_row
Y += row * stride_x_row
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
xbar = tl.where(cols < N, x, 0.0)
var = tl.sum(xbar * xbar, axis=0)
rstd = 1 / tl.sqrt(var + eps)
# tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
y = x * rstd
# Write output
tl.store(Y + cols, y, mask=mask)
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32),
],
key=["N"],
)
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
# @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
@triton.jit
def _l2_norm_bwd_kernel(
X, # pointer to the input
# Y, # pointer to the output to be recomputed
DY, # pointer to the output gradient
DX, # pointer to the input gradient
stride_x_row, # how much to increase the pointer when moving by 1 row
N, # number of columns in X
eps, # epsilon to avoid division by zero
BLOCK_N: tl.constexpr,
):
# Map the program id to the elements of X, DX, and DY it should compute.
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
X += row * stride_x_row
DX += row * stride_x_row
DY += row * stride_x_row
# Y += row * stride_y_row
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
x = tl.where(cols < N, x, 0.0)
var = tl.sum(x * x)
rstd = 1 / tl.sqrt(var + eps)
# tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
# y = x * rstd
dy = tl.load(DY + cols, mask=cols < N, other=0.0).to(tl.float32)
dy = tl.where(cols < N, dy, 0.0)
# dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x
dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x
tl.store(DX + cols, dx, mask=mask)
def _l2_norm_fwd(
x, eps=1e-6
):
x_shape_og = x.shape
x = x.reshape(-1, x.shape[-1])
if x.stride(-1) != 1:
x = x.contiguous()
M, N = x.shape
assert x.stride(-1) == 1
# allocate output
y = torch.empty_like(x)
assert y.stride(-1) == 1
N = x.shape[-1]
M = x.shape[0]
# rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError(
"This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
with torch.cuda.device(x.device.index):
_l2_norm_fwd_1pass_kernel[(M,)](
x,
y,
x.stride(0),
N,
eps,
# is_rms_norm,
BLOCK_N,
# residual is not None,
# residual_out is not None,
# bias is not None,
)
return y.reshape(x_shape_og)
def _l2_norm_bwd(
x, dy, eps=1e-5,
):
x_shape_og = x.shape
x = x.reshape(-1, dy.shape[-1])
dy = dy.reshape(-1, dy.shape[-1])
if dy.stride(-1) != 1:
dy = dy.contiguous()
assert dy.shape == x.shape
# allocate output
dx = torch.empty_like(x)
N = x.shape[-1]
M = x.shape[0]
assert x.stride(-1) == 1
assert dy.stride(-1) == 1
# rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError(
"This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
with torch.cuda.device(x.device.index):
_l2_norm_bwd_kernel[(M,)](
x,
dy,
dx,
x.stride(0),
N,
eps,
BLOCK_N,
)
return dx.reshape(x_shape_og)
class L2NormFN(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x,
eps=1e-6,
):
# reshape input data into 2D tensor
y = _l2_norm_fwd(x, eps)
ctx.x_shape_og = x_shape_og
ctx.eps = eps
ctx.x_dtype = x.dtype
ctx.save_for_backward(x)
return y
@staticmethod
def backward(ctx, dy, *args):
x, = ctx.saved_tensors
dx = _l2_norm_bwd(
x,
dy,
ctx.eps,
)
return (
dx,
None
)
l2_norm_fn = L2NormFN.apply
if __name__ == '__main__':
x = torch.rand(10, 10, 100).cuda().requires_grad_(True)
y = torch.nn.functional.normalize(x, dim=-1, p=2)
dy = torch.rand_like(y)
y.backward(dy, retain_graph=True)
x_grad, x.grad = x.grad, None
y2 = l2_norm_fn(x, 1e-6)
print((y-y2).abs().max())
y2.backward(dy, retain_graph=True)
x_grad2, x.grad = x.grad, None
print((x_grad2-x_grad).abs().max())
breakpoint()