RWKV-Runner/backend-python/rwkv_pip/beta/model.py

1822 lines
58 KiB
Python
Raw Normal View History

2023-08-14 14:07:15 +00:00
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
from typing import Optional
2023-09-15 08:30:11 +00:00
import types, gc, os, time, re, platform
2023-08-14 14:07:15 +00:00
import torch
from torch.nn import functional as F
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
current_path = os.path.dirname(os.path.abspath(__file__))
# https://zhuanlan.zhihu.com/p/612879065
def LoadPreCompileLibrary(file):
import importlib
import os
import torch
# load the custom_op_library and register the custom ops
lib_dir = os.path.dirname(__file__)
if os.name == "nt":
# Register the main torchvision library location on the default DLL path
import ctypes
import sys
kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
prev_error_mode = kernel32.SetErrorMode(0x0001)
if with_load_library_flags:
kernel32.AddDllDirectory.restype = ctypes.c_void_p
if sys.version_info >= (3, 8):
os.add_dll_directory(lib_dir)
elif with_load_library_flags:
res = kernel32.AddDllDirectory(lib_dir)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
raise ValueError(err)
kernel32.SetErrorMode(prev_error_mode)
loader_details = (
importlib.machinery.ExtensionFileLoader,
importlib.machinery.EXTENSION_SUFFIXES,
)
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
ext_specs = extfinder.find_spec(file)
if ext_specs is None:
return False
try:
torch.ops.load_library(ext_specs.origin)
except OSError as exc:
return False
return True
########################################################################################################
if os.environ.get("RWKV_JIT_ON") != "0":
os.environ["RWKV_JIT_ON"] = "1"
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
MyStatic = torch.jit.script
else:
MyModule = torch.nn.Module
def __nop(ob):
return ob
MyFunction = __nop
MyStatic = __nop
if os.environ.get("RWKV_CUDA_ON") == "1":
if LoadPreCompileLibrary("wkv_cuda") is False:
from torch.utils.cpp_extension import load
load(
name=f"wkv_cuda",
sources=[
f"{current_path}/cuda/wrapper.cpp",
f"{current_path}/cuda/operators.cu",
f"{current_path}/cuda/gemm_fp16_cublas.cpp",
f"{current_path}/cuda/att_one.cu",
f"{current_path}/cuda/att_seq.cu",
f"{current_path}/cuda/ffn.cu",
2023-09-15 08:30:11 +00:00
f"{current_path}/cuda/att_one_v5.cu",
2023-08-14 14:07:15 +00:00
],
verbose=True,
2023-10-25 09:51:13 +00:00
extra_ldflags=["cublas.lib" if os.name == "nt" else ""],
2023-08-14 14:07:15 +00:00
extra_cuda_cflags=[
"-t 4",
"-std=c++17",
"--use_fast_math",
"-O3",
"--extra-device-vectorization",
],
is_python_module=False,
)
@MyStatic
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
assert 1 * C % min(C, 32) == 0
assert (
k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
)
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
w = w.contiguous()
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty(
(T, C),
device=w.device,
memory_format=torch.contiguous_format,
dtype=k.dtype,
)
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
return y, aa, bb, pp
@MyStatic
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == (B, N)
assert w.shape == (N, M)
assert rx.shape == mx.shape == (M,)
assert ry.shape == my.shape == (N, 1)
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
return y
@MyStatic
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == (N,)
assert w.shape == (N, M)
assert rx.shape == mx.shape == (M,)
assert ry.shape == my.shape == (N, 1)
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
return y.to(dtype=x.dtype)
2023-09-15 08:30:11 +00:00
else:
os.environ["RWKV_CUDA_ON"] = "0"
if os.environ.get("RWKV_CUDA_ON") == "1":
2023-08-14 14:07:15 +00:00
@MyStatic
def gemm(a, b, output_dtype: Optional[torch.dtype] = None):
if output_dtype is None:
output_dtype = a.dtype
if a.dtype == b.dtype == torch.float16 and a.device.type == "cuda":
if len(a.shape) == 1:
2023-09-15 08:30:11 +00:00
assert len(b.shape) == 2
2023-08-14 14:07:15 +00:00
c = torch.empty((b.shape[-1],), dtype=output_dtype, device=a.device)
a = a.unsqueeze(0)
else:
2023-09-15 08:30:11 +00:00
assert len(a.shape) == len(b.shape)
assert len(a.shape) == 2 or len(a.shape) == 3
# torch.empty((*a.shape[:-1], b.shape[-1])) doesn't work with jit
if len(a.shape) == 2:
c = torch.empty(
(a.shape[0], b.shape[-1]), dtype=output_dtype, device=a.device
)
else:
c = torch.empty(
(a.shape[0], a.shape[1], b.shape[-1]),
dtype=output_dtype,
device=a.device,
)
2023-08-14 14:07:15 +00:00
torch.ops.rwkv.gemm_fp16_cublas(a, b, c)
return c
else:
return (a @ b).to(output_dtype)
else:
def gemm(a, b, output_dtype: Optional[torch.dtype] = None):
if output_dtype is None:
output_dtype = a.dtype
return (a @ b).to(output_dtype)
########################################################################################################
class RWKV(MyModule):
def __init__(self, model, strategy, verbose=True, convert_and_save_and_exit=None):
super().__init__()
if verbose:
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
else:
prxxx = lambda *args, **kwargs: None
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
if not re.match(STRATEGY_REGEX, strategy):
raise ValueError(
"Invalid strategy. Please read https://pypi.org/project/rwkv/"
)
strategy = ("->".join([x.strip() for x in strategy.split("->")])).replace(
"->", " -> "
)
self.args = types.SimpleNamespace()
args = self.args
args.MODEL_NAME = model
args.strategy_string = strategy
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
self.RESCALE_LAYER = 6 if "fp16" in strategy else 0
prxxx(
f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n'
)
args.MODEL_NAME = args.MODEL_NAME.strip()
if not args.MODEL_NAME.endswith(".pth"):
args.MODEL_NAME += ".pth"
prxxx(f"Loading {args.MODEL_NAME} ...")
with torch.no_grad():
self.w = torch.load(
args.MODEL_NAME, map_location="cpu"
) # load model to CPU first
# it is supported to load a pure meta-tensor state dict (e.g. for quick testing)
for k, v in self.w.items():
2023-09-15 08:30:11 +00:00
if isinstance(v, torch.Tensor) and v.is_meta:
2023-08-14 14:07:15 +00:00
# torch.zeros_like(v, device='cpu') doesn't produce an all-zero tensor
# if v is a meta tensor
self.w[k] = torch.zeros(v.shape, dtype=v.dtype, device="cpu")
gc.collect()
w = self.w
ALREADY_CONVERTED = False
if "_strategy" in w:
ALREADY_CONVERTED = True
assert (
convert_and_save_and_exit == None
) # you should only convert a raw model
prxxx(
f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n"
)
assert (
w["_strategy"] == args.strategy_string
2023-12-28 16:38:33 +00:00
), "model has been converted and does not match current strategy; if you are using a new strategy, re-convert the model"
2023-08-14 14:07:15 +00:00
assert (
float(w["_version"]) >= 0.7
) # sometimes you should re-convert using latest convert_model.py
assert w["_rescale_layer"] == self.RESCALE_LAYER
del w["_strategy"]
del w["_version"]
del w["_rescale_layer"]
args.n_embd = w["emb.weight"].shape[1]
args.n_layer = 0
keys = list(w.keys())
2023-09-15 08:30:11 +00:00
self.version = 4
2023-08-14 14:07:15 +00:00
for x in keys:
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
args.n_layer = max(args.n_layer, layer_id + 1)
2023-09-15 08:30:11 +00:00
if "ln_x" in x:
self.version = 5
if self.version == 5 and "att.time_decay" in x:
args.n_head = w[x].shape[0]
2023-08-14 14:07:15 +00:00
####################### Compute strategy
s = [x.strip().split(" ") for x in strategy.split("->")]
plan = [0] * len(s)
stream_i = -1
stream_count = 0
to_allocate = args.n_layer + 1
allocated = 0
free_slots = 0
for i in range(len(s)):
si = s[i]
si1 = si[1]
if si1.startswith("fp32"):
si[1] = [torch.float]
elif si1.startswith("fp16"):
si[1] = [torch.float16]
elif si1.startswith("bf16"):
si[1] = [torch.bfloat16]
if si1.endswith("i8"):
si[1] += [torch.uint8]
else:
si[1] += [si[1][0]]
if len(si) > 2:
ss = si[2]
assert ss.startswith("*")
if ss.endswith("+"):
plan[i] = int(ss[1:-1])
stream_i = i
else:
plan[i] = int(ss[1:])
allocated += plan[i]
if allocated >= to_allocate:
plan[i] += to_allocate - allocated
break
else:
free_slots += 1
if stream_i < 0:
if free_slots > 0 and to_allocate > allocated:
for i in range(len(s)):
if plan[i] == 0:
plan[i] = (to_allocate - allocated) // free_slots
allocated += plan[i]
free_slots -= 1
if to_allocate > allocated:
plan[len(s) - 1] += to_allocate - allocated
else:
if to_allocate > allocated:
stream_count = to_allocate - allocated
plan[stream_i] += stream_count
prxxx(f"Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)")
for i in range(len(s)):
ss = s[i]
if i != stream_i:
prxxx(
f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers'
)
else:
prxxx(
f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers'
)
plan[i] += 0 if i == 0 else plan[i - 1]
self.strategy = [None] * (args.n_layer + 1)
strategy = self.strategy
for n in range(args.n_layer + 1):
for i in range(len(s)):
if n < plan[i]:
strategy[n] = types.SimpleNamespace()
strategy[n].device = s[i][0]
strategy[n].atype = s[i][1][0]
strategy[n].wtype = s[i][1][1]
strategy[n].stream = False
if i == stream_i and n >= (plan[i] - stream_count):
strategy[n].stream = True
break
prxxx(
f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",
end=" ",
)
prxxx()
####################### Load weights to self.w
if not ALREADY_CONVERTED:
try: # precompute embedding
w["emb.weight"] = F.layer_norm(
w["emb.weight"],
(args.n_embd,),
weight=w["blocks.0.ln0.weight"],
bias=w["blocks.0.ln0.bias"],
)
except:
w["emb.weight"] = F.layer_norm(
w["emb.weight"].float(),
(args.n_embd,),
weight=w["blocks.0.ln0.weight"].float(),
bias=w["blocks.0.ln0.bias"].float(),
)
del w["blocks.0.ln0.weight"]
del w["blocks.0.ln0.bias"]
print_need_newline = False
2023-09-15 08:30:11 +00:00
REAL_TIME_FIRST = False
for x in list(w.keys()):
if ".time_faaaa" in x:
REAL_TIME_FIRST = True
if REAL_TIME_FIRST:
w = {
k.replace(".time_faaaa", ".time_first")
if ".time_faaaa" in k
else k: v
for k, v in w.items()
}
self.w = w
2023-08-14 14:07:15 +00:00
keys = list(w.keys())
for x in keys:
w[x].requires_grad = False
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
if ("ln_out." in x) or ("head." in x):
layer_id = args.n_layer
dd = strategy[layer_id]
DEVICE = dd.device
ATYPE = dd.atype
WTYPE = dd.wtype
if not ALREADY_CONVERTED:
if self.RESCALE_LAYER > 0:
if "att.output.weight" in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if "ffn.value.weight" in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if ".time_" in x:
w[x] = w[x].squeeze()
if (
"key.weight" in x
or "value.weight" in x
or "receptance.weight" in x
or "output.weight" in x
or "head.weight" in x
):
w[x] = w[x].t()
if ".time_decay" in x: # need fp32 for this
2023-09-15 08:30:11 +00:00
if self.version == 4:
w[x] = -torch.exp(w[x].float())
elif self.version == 5:
w[x] = torch.exp(-torch.exp(w[x].float())).reshape(-1, 1, 1)
2023-08-14 14:07:15 +00:00
elif ".time_first" in x: # need fp32 for this
2023-09-15 08:30:11 +00:00
if self.version == 4:
w[x] = w[x].float()
elif self.version == 5:
if REAL_TIME_FIRST:
w[x] = w[x].float().reshape(-1, 1, 1)
else:
w[x] = torch.exp(w[x].float()).reshape(-1, 1, 1)
elif ".ln_x" in x: # need fp32 for group_norm
2023-08-14 14:07:15 +00:00
w[x] = w[x].float()
else:
if (len(w[x].shape) == 2) and ("emb" not in x):
if WTYPE != torch.uint8:
w[x] = w[x].to(dtype=WTYPE)
else:
w[x] = w[x].float()
if w[x].shape[0] > w[x].shape[1]:
w[x + "_my"] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x + "_my"]
w[x + "_mx"] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x + "_mx"]
w[x + "_rx"] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x + "_rx"]
w[x + "_ry"] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x + "_ry"]
else:
w[x + "_mx"] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x + "_mx"]
w[x + "_my"] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x + "_my"]
w[x + "_rx"] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x + "_rx"]
w[x + "_ry"] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x + "_ry"]
w[x] = torch.clip(
torch.floor(w[x] * 256), min=0, max=255
).to(dtype=torch.uint8)
w[x + "_mx"] = w[x + "_mx"].to(dtype=ATYPE).contiguous()
w[x + "_rx"] = (
(w[x + "_rx"] / 16).to(dtype=ATYPE).contiguous()
)
w[x + "_my"] = w[x + "_my"].to(dtype=ATYPE).contiguous()
w[x + "_ry"] = (
(w[x + "_ry"] / 16).to(dtype=ATYPE).contiguous()
)
else:
w[x] = w[x].to(dtype=ATYPE)
if convert_and_save_and_exit == None:
if "emb." in x:
w[x] = w[x].contiguous()
elif (dd.stream) and (
x.endswith("key.weight")
or x.endswith("value.weight")
or x.endswith("receptance.weight")
or x.endswith("output.weight")
):
try:
w[x] = (
w[x].contiguous().pin_memory()
) # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
except:
print(
"Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower."
)
elif DEVICE != "cpu":
w[x] = w[x].to(device=DEVICE).contiguous()
if (dd.stream) or (DEVICE != "cpu"):
try:
w[x + "_mx"] = w[x + "_mx"].to(device=DEVICE).contiguous()
w[x + "_rx"] = w[x + "_rx"].to(device=DEVICE).contiguous()
w[x + "_my"] = w[x + "_my"].to(device=DEVICE).contiguous()
w[x + "_ry"] = w[x + "_ry"].to(device=DEVICE).contiguous()
except:
pass
if "ffn.value.weight" in x:
gc.collect()
if "cuda" in args.strategy_string:
torch.cuda.empty_cache()
shape = [i for i in w[x].shape if i != 1]
if len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
else:
shape = f" {str(shape[0]).rjust(5)} "
if layer_id == 0 or layer_id >= args.n_layer - 1:
if print_need_newline:
prxxx("\n", end="")
print_need_newline = False
dt = str(w[x].dtype).replace("torch.", "")
dt = (
dt.replace("float32", "f32")
.replace("bfloat16", "bf16")
.replace("float16", "f16")
.replace("uint8", "i8")
)
prxxx(
x.ljust(32),
dt.rjust(4),
str(w[x].device).rjust(8),
shape,
" (pinned)" if w[x].is_pinned() else "",
)
else:
print_need_newline = True
prxxx(".", end="", flush=True)
if convert_and_save_and_exit:
w["_strategy"] = args.strategy_string
w["_rescale_layer"] = self.RESCALE_LAYER
w["_version"] = "0.7"
if not convert_and_save_and_exit.endswith(".pth"):
convert_and_save_and_exit += ".pth"
prxxx(f"Saving to {convert_and_save_and_exit}...")
torch.save(w, convert_and_save_and_exit)
prxxx(f"Converted and saved. Now this will exit.")
exit(0)
gc.collect()
if "cuda" in args.strategy_string:
torch.cuda.empty_cache()
@MyFunction
def torch_mm8_seq(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
@MyFunction
def torch_mm8_one(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
if os.environ.get("RWKV_CUDA_ON") == "1":
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
if w.device.type == "cuda" and x.dtype == torch.float16:
B, N, M = x.shape[0], w.shape[0], w.shape[1]
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
if w.device.type == "cuda":
N, M = w.shape[0], w.shape[1]
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_one(x, w, mx, rx, my, ry)
else:
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
return self.torch_mm8_one(x, w, mx, rx, my, ry)
########################################################################################################
@MyFunction
def ffn_one(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
vx = torch.square(torch.relu(gemm(kx, kw)))
out = r * gemm(vx, vw)
return x + out, xx
@MyFunction
def ffn_one_i8(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx
########################################################################################################
@MyFunction
def ffn_seq(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
vx = torch.square(torch.relu(gemm(kx, kw)))
out = r * gemm(vx, vw)
return x + out, xx[-1, :]
@MyFunction
def ffn_seq_i8(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx[-1, :]
########################################################################################################
@MyFunction
def att_one(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
k = gemm(kx, kw, output_dtype=torch.float32)
v = gemm(vx, vw, output_dtype=torch.float32)
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = gemm(r * wkv, ow)
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
@MyFunction
def att_one_i8(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
########################################################################################################
@MyFunction
def att_seq(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
k = gemm(kx, kw, output_dtype=torch.float32)
v = gemm(vx, vw, output_dtype=torch.float32)
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = gemm(r * sx, ow)
return x + out, xx[-1, :], aa, bb, pp
@MyFunction
def att_seq_i8(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
return x + out, xx[-1, :], aa, bb, pp
########################################################################################################
2023-09-15 08:30:11 +00:00
@MyFunction
def att_one_v5(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
H = t_decay.shape[0]
S = x.shape[-1] // H
r = gemm(rx, rw, output_dtype=torch.float32).view(H, 1, S)
k = gemm(kx, kw, output_dtype=torch.float32).view(H, S, 1)
v = gemm(vx, vw, output_dtype=torch.float32).view(H, 1, S)
a = gemm(k, v)
out = r @ (t_first * a + s)
s = a + t_decay * s
out = out.flatten()
out = F.group_norm(
out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b
).squeeze(0)
out = out.to(dtype=x.dtype)
out = gemm(out, ow)
return x + out, xx, s
@MyFunction
def att_seq_v5(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
H = t_decay.shape[0]
S = x.shape[-1] // H
T = x.shape[0]
w = t_decay.reshape(-1, 1)
u = t_first.reshape(-1, 1)
ws = w.pow(T).reshape(H, 1, 1)
ind = torch.arange(T - 1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
w = w.repeat(1, T).pow(ind)
wk = w.reshape(H, 1, T)
wb = wk.transpose(-2, -1).flip(1)
w = torch.cat([w[:, 1:], u], dim=1)
w = F.pad(w, (0, T))
w = torch.tile(w, [T])
w = w[:, :-T].reshape(-1, T, 2 * T - 1)
w = w[:, :, T - 1 :].reshape(H, T, T)
r = gemm(rx, rw, output_dtype=torch.float32).view(T, H, S).transpose(0, 1)
k = (
gemm(kx, kw, output_dtype=torch.float32)
.view(T, H, S)
.transpose(0, 1)
.transpose(-2, -1)
)
v = gemm(vx, vw, output_dtype=torch.float32).view(T, H, S).transpose(0, 1)
out = ((r @ k) * w) @ v + (r @ s) * wb
s = ws * s + (k * wk) @ v
out = out.transpose(0, 1).contiguous().reshape(T, H * S)
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b)
out = out.to(dtype=x.dtype)
out = gemm(out, ow)
return x + out, xx[-1, :], s
########################################################################################################
2023-08-14 14:07:15 +00:00
if os.environ["RWKV_CUDA_ON"] == "1":
@MyFunction
def cuda_att_seq_fp16(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
seq_len = x.shape[0]
kvrx_and_y_bytes = x.numel() * 2
k_bytes = seq_len * kw.shape[1] * 4
v_bytes = seq_len * vw.shape[1] * 4
r_bytes = seq_len * rw.shape[1] * 2
buf = torch.empty(
(kvrx_and_y_bytes * 4 + k_bytes + v_bytes + r_bytes,),
device=x.device,
dtype=torch.int8,
)
x_plus_out_t = torch.empty_like(x)
xx = torch.ops.rwkv.att_seq(
x,
sx,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
kw,
vw,
rw,
ow,
t_first,
pp,
aa,
bb,
t_decay,
buf,
x_plus_out_t,
)
return x_plus_out_t, xx[-1, :], aa, bb, pp
@MyFunction
def cuda_att_seq_naive(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
k = gemm(kx, kw, output_dtype=torch.float32)
v = gemm(vx, vw, output_dtype=torch.float32)
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = gemm(r * y.to(x.dtype), ow)
return x + out, xx[-1, :], aa, bb, pp
@MyFunction
def cuda_att_seq_i8(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
return x + out, xx[-1, :], aa, bb, pp
@MyFunction
def cuda_ffn_seq_fp16(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
krx_bytes = x.numel() * x.element_size()
vx_bytes = x.shape[0] * kw.shape[1] * x.element_size()
r_bytes = x.shape[0] * rw.shape[1] * x.element_size()
buf = torch.empty(
(krx_bytes * 2 + vx_bytes + r_bytes,), device=x.device, dtype=torch.int8
)
x_plus_out = torch.empty_like(x)
xx = torch.ops.rwkv.ffn_seq(
x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, buf, x_plus_out
)
2023-09-15 08:30:11 +00:00
return x_plus_out, xx[-1, :]
2023-08-14 14:07:15 +00:00
@MyFunction
def cuda_att_one_fp16(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
kx = torch.empty_like(x)
vx = torch.empty_like(x)
rx = torch.empty_like(x)
k_t = torch.empty((kw.shape[0],), dtype=torch.float32, device=x.device)
v_t = torch.empty((vw.shape[0],), dtype=torch.float32, device=x.device)
r_t = torch.empty((rw.shape[0],), dtype=torch.float16, device=x.device)
x_plus_out_t = torch.empty_like(x)
t1_t = torch.empty_like(x, dtype=torch.float32)
t2_t = torch.empty_like(x, dtype=torch.float32)
p_t = torch.empty_like(x, dtype=torch.float32)
xx = torch.ops.rwkv.att_one(
x,
ln_w,
ln_b,
sx,
k_mix,
v_mix,
r_mix,
kw,
kx,
vw,
vx,
rw,
rx,
ow,
t_first,
k_t,
pp,
ow,
aa,
bb,
t_decay,
v_t,
r_t,
x_plus_out_t,
t1_t,
t2_t,
p_t,
)
return x_plus_out_t, xx, t1_t, t2_t, p_t
2023-09-15 08:30:11 +00:00
@MyFunction
def cuda_att_one_v5_fp16(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
kx = torch.empty_like(x)
vx = torch.empty_like(x)
rx = torch.empty_like(x)
H = t_decay.shape[0]
S = x.shape[-1] // H
r = torch.empty((H * S,), dtype=torch.float32, device=x.device)
k = torch.empty((H * S,), dtype=torch.float32, device=x.device)
v = torch.empty((H * S,), dtype=torch.float32, device=x.device)
s1 = torch.empty((H, S, S), dtype=torch.float32, device=x.device)
s2 = torch.empty((H, S, S), dtype=torch.float32, device=x.device)
x_plus_out = torch.empty_like(x)
xx = torch.ops.rwkv.att_one_v5(
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
kw,
kx,
vw,
vx,
rw,
rx,
ow,
t_first,
k,
t_decay,
v,
r,
s1,
x_plus_out,
s2,
)
return x_plus_out, xx, s2
2023-08-14 14:07:15 +00:00
@MyFunction
def cuda_ffn_one_fp16(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
krx_bytes = x.numel() * x.element_size()
vx_bytes = x.shape[0] * kw.shape[1] * x.element_size()
r_bytes = x.shape[0] * rw.shape[1] * x.element_size()
buf = torch.empty(
(krx_bytes * 2 + vx_bytes + r_bytes,), device=x.device, dtype=torch.int8
)
x_plus_out = torch.empty_like(x)
xx = torch.ops.rwkv.ffn_one(
x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, buf, x_plus_out
)
return x_plus_out, xx
########################################################################################################
def forward(self, tokens, state, full_output=False):
with torch.no_grad():
w = self.w
args = self.args
if state == None:
2023-09-15 08:30:11 +00:00
if self.version == 4:
state = [None] * args.n_layer * 5
for i in range(
args.n_layer
): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i * 5 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 1] = torch.zeros(
2023-08-14 14:07:15 +00:00
args.n_embd,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
2023-09-15 08:30:11 +00:00
state[i * 5 + 2] = torch.zeros(
args.n_embd,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 5 + 3] = (
torch.zeros(
args.n_embd,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
- 1e30
)
state[i * 5 + 4] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
elif self.version == 5:
state = [None] * args.n_layer * 3
for i in range(args.n_layer): # state: 0=att_xx 1=att_kv 2=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i * 3 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 3 + 1] = torch.zeros(
(
args.n_head,
args.n_embd // args.n_head,
args.n_embd // args.n_head,
),
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 3 + 2] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
2023-08-14 14:07:15 +00:00
seq_mode = len(tokens) > 1
x = w["emb.weight"][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f"blocks.{i}."
att = f"blocks.{i}.att."
ffn = f"blocks.{i}.ffn."
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1":
if wtype == torch.float16:
ATT = self.cuda_att_seq_fp16
FFN = self.cuda_ffn_seq_fp16
elif wtype == torch.uint8:
ATT = self.cuda_att_seq_i8
else:
ATT = self.cuda_att_seq_naive
2023-09-15 08:30:11 +00:00
if self.version == 5:
ATT = self.att_seq_v5
2023-08-14 14:07:15 +00:00
else:
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
2023-09-15 08:30:11 +00:00
if self.version == 5:
ATT = self.att_one_v5
2023-08-14 14:07:15 +00:00
if (
"cuda" in str(dev)
and os.environ["RWKV_CUDA_ON"] == "1"
and wtype == torch.float16
):
ATT = self.cuda_att_one_fp16
FFN = self.cuda_ffn_one_fp16
2023-09-15 08:30:11 +00:00
if self.version == 5:
ATT = self.cuda_att_one_v5_fp16
2023-08-14 14:07:15 +00:00
x = x.to(dtype=atype, device=dev)
kw = w[f"{att}key.weight"]
vw = w[f"{att}value.weight"]
rw = w[f"{att}receptance.weight"]
ow = w[f"{att}output.weight"]
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x
krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x
kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x
kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x
vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x
vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x
vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x
vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x
rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x
rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x
rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x
rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x
omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x
orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x
omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x
ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x
2023-09-15 08:30:11 +00:00
if self.version == 4:
(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
) = ATT(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
)
elif self.version == 5:
x, state[i * 3 + 0], state[i * 3 + 1] = ATT(
x,
state[i * 3 + 0],
state[i * 3 + 1],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}ln_x.weight"],
w[f"{att}ln_x.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
)
2023-08-14 14:07:15 +00:00
if dd.stream:
del kw, vw, rw, ow
kw = w[f"{ffn}key.weight"]
vw = w[f"{ffn}value.weight"]
rw = w[f"{ffn}receptance.weight"]
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
kmx = w[f"{ffn}key.weight_mx"] if wtype == torch.uint8 else x
krx = w[f"{ffn}key.weight_rx"] if wtype == torch.uint8 else x
kmy = w[f"{ffn}key.weight_my"] if wtype == torch.uint8 else x
kry = w[f"{ffn}key.weight_ry"] if wtype == torch.uint8 else x
vmx = w[f"{ffn}value.weight_mx"] if wtype == torch.uint8 else x
vrx = w[f"{ffn}value.weight_rx"] if wtype == torch.uint8 else x
vmy = w[f"{ffn}value.weight_my"] if wtype == torch.uint8 else x
vry = w[f"{ffn}value.weight_ry"] if wtype == torch.uint8 else x
rmx = w[f"{ffn}receptance.weight_mx"] if wtype == torch.uint8 else x
rrx = w[f"{ffn}receptance.weight_rx"] if wtype == torch.uint8 else x
rmy = w[f"{ffn}receptance.weight_my"] if wtype == torch.uint8 else x
rry = w[f"{ffn}receptance.weight_ry"] if wtype == torch.uint8 else x
2023-09-15 08:30:11 +00:00
if self.version == 4:
offset = i * 5 + 4
elif self.version == 5:
offset = i * 3 + 2
x, state[offset] = FFN(
2023-08-14 14:07:15 +00:00
x,
2023-09-15 08:30:11 +00:00
state[offset],
2023-08-14 14:07:15 +00:00
w[f"{bbb}ln2.weight"],
w[f"{bbb}ln2.bias"],
w[f"{ffn}time_mix_k"],
w[f"{ffn}time_mix_r"],
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
)
if dd.stream:
del kw, vw, rw
if self.RESCALE_LAYER > 0:
if (i + 1) % self.RESCALE_LAYER == 0:
x = x / 2
dd = self.strategy[args.n_layer]
x = x[-1, :] if (seq_mode and (not full_output)) else x
x = x.to(dtype=dd.atype, device=dd.device)
x = F.layer_norm(
x, (args.n_embd,), weight=w["ln_out.weight"], bias=w["ln_out.bias"]
)
if w["head.weight"].dtype != torch.uint8:
x = x @ w["head.weight"]
else:
if seq_mode and full_output:
x = self.mm8_seq(
x,
w["head.weight"],
w["head.weight_mx"],
w["head.weight_rx"],
w["head.weight_my"],
w["head.weight_ry"],
)
else:
x = self.mm8_one(
x,
w["head.weight"],
w["head.weight_mx"],
w["head.weight_rx"],
w["head.weight_my"],
w["head.weight_ry"],
)
return x.float(), state