RWKV-Runner/finetune/lora/v6/fla/ops/rebased/naive.py

81 lines
2.7 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
import torch
from einops import rearrange
from fla.ops.rebased.parallel import parallel_rebased
def naive_parallel_rebased(q, k, v, use_scale=True, use_norm=True):
if use_scale:
q = q * (q.shape[-1] ** -0.5)
attn = q @ k.transpose(-2, -1)
attn = (attn ** 2)
attn.masked_fill_(~torch.tril(torch.ones(
q.shape[-2], q.shape[-2], dtype=torch.bool, device=q.device)), 0)
o = attn @ v
if use_norm:
z = attn.sum(-1)
return o / (z[..., None] + 1e-6)
else:
return o
if __name__ == "__main__":
B = 4
H = 4
L = 128
# D = 15
dtype = torch.float32
q = (torch.randn(B, H, L, 16).cuda().to(dtype)).requires_grad_(True)
k = (torch.randn(B, H, L, 16).cuda().to(dtype)).requires_grad_(True)
v = torch.randn(B, H, L, 128).cuda().to(dtype).requires_grad_(True)
do = torch.randn_like(v).cuda()
ref = naive_parallel_rebased(q, k, v, True, True)
ref.backward(do, retain_graph=True)
ref_dq, q.grad = q.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dv, v.grad = v.grad.clone(), None
# tri = naive_chunk_based(q, k, v)
# tri.backward(do, retain_graph=True)
# tri_dq, q.grad = q.grad.clone(), None
# tri_dk, k.grad = k.grad.clone(), None
# tri_dv, v.grad = v.grad.clone(), None
# assert ref.allclose(tri, 0, 1e-4), breakpoint()
# assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint()
# assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint()
# assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint()
tri = parallel_rebased(q, k, v, 1e-6, True, True)
tri.backward(do, retain_graph=True)
tri_dq, q.grad = q.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dv, v.grad = v.grad.clone(), None
print((ref-tri).abs().max())
print((ref_dq-tri_dq).abs().max())
print((ref_dk-tri_dk).abs().max())
print((ref_dv-tri_dv).abs().max())
# assert ref.allclose(tri, 0, 1e-4), breakpoint()
# assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint()
# assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint()
# assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint()
# tri = parallel_based(q, k, v, True, True)
# tri.backward(do, retain_graph=True)
# tri_dq, q.grad = q.grad.clone(), None
# tri_dk, k.grad = k.grad.clone(), None
# tri_dv, v.grad = v.grad.clone(), None
# print((ref-tri).abs().max())
# print((ref_dq-tri_dq).abs().max())
# print((ref_dk-tri_dk).abs().max())
# print((ref_dv-tri_dv).abs().max())
# assert ref.allclose(tri, 0, 1e-4), breakpoint()
# assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint()
# assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint()
# assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint()