RWKV-Runner/backend-python/convert_safetensors.py

110 lines
3.2 KiB
Python
Raw Normal View History

2023-08-16 15:07:58 +00:00
import json
import os
import sys
import copy
import torch
from safetensors.torch import load_file, save_file
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, help="Path to input pth model")
parser.add_argument(
"--output",
type=str,
default="./converted.st",
help="Path to output safetensors model",
)
args = parser.parse_args()
def rename_key(rename, name):
for k, v in rename.items():
if k in name:
name = name.replace(k, v)
return name
2023-12-06 15:08:40 +00:00
def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=[]):
2023-08-16 15:07:58 +00:00
loaded = torch.load(pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
kk = list(loaded.keys())
version = 4
for x in kk:
if "ln_x" in x:
version = max(5, version)
if "gate.weight" in x:
version = max(5.1, version)
if int(version) == 5 and "att.time_decay" in x:
if len(loaded[x].shape) > 1:
if loaded[x].shape[1] > 1:
version = max(5.2, version)
if "time_maa" in x:
version = max(6, version)
if version == 5.1 and "midi" in pt_filename.lower():
import numpy as np
np.set_printoptions(precision=4, suppress=True, linewidth=200)
kk = list(loaded.keys())
_, n_emb = loaded["emb.weight"].shape
for k in kk:
if "time_decay" in k or "time_faaaa" in k:
# print(k, mm[k].shape)
loaded[k] = (
loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
)
2023-08-16 15:07:58 +00:00
loaded = {k: v.clone().half() for k, v in loaded.items()}
# for k, v in loaded.items():
# print(f'{k}\t{v.shape}\t{v.dtype}')
2023-08-16 15:07:58 +00:00
2023-12-06 15:08:40 +00:00
loaded = {rename_key(rename, k).lower(): v.contiguous() for k, v in loaded.items()}
2023-08-16 15:07:58 +00:00
# For tensors to be contiguous
for k, v in loaded.items():
for transpose_name in transpose_names:
if transpose_name in k:
loaded[k] = v.transpose(0, 1)
2023-12-06 15:08:40 +00:00
loaded = {k: v.clone().half().contiguous() for k, v in loaded.items()}
for k, v in loaded.items():
print(f"{k}\t{v.shape}\t{v.dtype}")
2023-08-16 15:07:58 +00:00
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={"format": "pt"})
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
if __name__ == "__main__":
try:
convert_file(
args.input,
args.output,
2023-12-06 15:08:40 +00:00
rename={
"time_faaaa": "time_first",
"time_maa": "time_mix",
"lora_A": "lora.0",
"lora_B": "lora.1",
},
transpose_names=[
"time_mix_w1",
"time_mix_w2",
"time_decay_w1",
"time_decay_w2",
],
)
2023-08-16 15:07:58 +00:00
print(f"Saved to {args.output}")
except Exception as e:
2023-11-08 14:57:38 +00:00
print(e)
2023-08-16 15:07:58 +00:00
with open("error.txt", "w") as f:
f.write(str(e))