16 lines
594 B
Python
16 lines
594 B
Python
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def naive_retention(q, k, v):
|
||
|
orig_type = q.dtype
|
||
|
q, k, v = q.float(), k.float(), v.float()
|
||
|
_, n_heads, seq_len, d_head = q.shape
|
||
|
s = (1 - q.new_tensor(2., dtype=torch.float).pow(-5. - q.new_tensor(range(n_heads), dtype=torch.float))).log2()
|
||
|
n = q.new_tensor(range(seq_len), dtype=torch.float)
|
||
|
n = torch.exp2((n.unsqueeze(-1) - n) * s.view(-1, 1, 1)) * n.unsqueeze(-1).ge(n)
|
||
|
s = torch.einsum('bhqd,bhkd,hqk->bhqk', q * d_head ** -0.5, k, n.to(q.dtype))
|
||
|
o = torch.einsum('bhqk,bhkd->bhqd', s, v)
|
||
|
return o.to(orig_type)
|