RWKV-Runner/finetune/lora/train.py

480 lines
21 KiB
Python
Raw Normal View History

2023-07-03 17:41:47 +08:00
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
if __name__ == "__main__":
from argparse import ArgumentParser
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
rank_zero_info("########## work in progress ##########")
########################################################################################################
#
# example: train a simple L12-D768 RWKV on dummy data
#
# python train.py --load_model "" --wandb "" --proj_dir "out" \
# --data_file "" --data_type "dummy" --vocab_size 0 \
# --ctx_len 128 --epoch_steps 1000 --epoch_count 20 --epoch_begin 0 --epoch_save 10 \
# --micro_bsz 16 --n_layer 12 --n_embd 768 --pre_ffn 0 --head_qk 0 \
# --lr_init 6e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
# example: train a simple L6-D512 RWKV from scratch on enwik8
#
# python train.py --load_model "" --wandb "" --proj_dir "out" \
# --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \
# --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \
# --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \
# --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
# example: fine-tune RWKV 1.5B using 8xA100 40G = 1.76it/s = 115k token/s, VRAM 37477M
#
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
# --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \
# --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
# --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0
# example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow
#
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
# --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \
# --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1
parser = ArgumentParser()
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--wandb", default="", type=str
) # wandb project name. if "" then don't use wandb
2023-07-03 17:41:47 +08:00
parser.add_argument("--proj_dir", default="out", type=str)
parser.add_argument("--random_seed", default="-1", type=int)
parser.add_argument("--data_file", default="", type=str)
parser.add_argument("--data_type", default="utf-8", type=str)
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--vocab_size", default=0, type=int
) # vocab_size = 0 means auto (for char-level LM and .txt data)
2023-07-03 17:41:47 +08:00
parser.add_argument("--ctx_len", default=1024, type=int)
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--epoch_steps", default=1000, type=int
) # a mini "epoch" has [epoch_steps] steps
parser.add_argument(
"--epoch_count", default=500, type=int
) # train for this many "epochs". will continue afterwards with lr = lr_final
parser.add_argument(
"--epoch_begin", default=0, type=int
) # if you load a model trained for x "epochs", set epoch_begin = x
parser.add_argument(
"--epoch_save", default=5, type=int
) # save the model every [epoch_save] "epochs"
parser.add_argument(
"--micro_bsz", default=12, type=int
) # micro batch size (batch size per GPU)
2023-07-03 17:41:47 +08:00
parser.add_argument("--n_layer", default=6, type=int)
parser.add_argument("--n_embd", default=512, type=int)
parser.add_argument("--dim_att", default=0, type=int)
parser.add_argument("--dim_ffn", default=0, type=int)
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--pre_ffn", default=0, type=int
) # replace first att layer by ffn (sometimes better)
2023-07-03 17:41:47 +08:00
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--tiny_att_layer", default=-999, type=int
) # tiny attention @ which layer
2023-07-03 17:41:47 +08:00
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--lr_init", default=6e-4, type=float
) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
2023-07-03 17:41:47 +08:00
parser.add_argument("--lr_final", default=1e-5, type=float)
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--warmup_steps", default=0, type=int
) # try 50 if you load a model
2023-07-03 17:41:47 +08:00
parser.add_argument("--beta1", default=0.9, type=float)
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--beta2", default=0.99, type=float
) # use 0.999 when your model is close to convergence
2023-07-03 17:41:47 +08:00
parser.add_argument("--adam_eps", default=1e-8, type=float)
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--grad_cp", default=0, type=int
) # gradient checkpt: saves VRAM, but slower
2023-07-03 17:41:47 +08:00
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--my_pile_shift", default=-1, type=int
) # my special pile mode - text shift
2023-07-03 17:41:47 +08:00
parser.add_argument("--my_pile_edecay", default=0, type=int)
2023-07-09 12:32:50 +08:00
parser.add_argument(
"--layerwise_lr", default=1, type=int
) # layerwise lr for faster convergence (but slower it/s)
parser.add_argument(
"--ds_bucket_mb", default=200, type=int
) # deepspeed bucket size in MB. 200 seems enough
2023-07-03 17:41:47 +08:00
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
parser.add_argument("--my_img_version", default=0, type=str)
parser.add_argument("--my_img_size", default=0, type=int)
parser.add_argument("--my_img_bit", default=0, type=int)
2023-07-09 12:32:50 +08:00
parser.add_argument("--my_img_clip", default="x", type=str)
2023-07-03 17:41:47 +08:00
parser.add_argument("--my_img_clip_scale", default=1, type=float)
parser.add_argument("--my_img_l1_scale", default=0, type=float)
2023-07-09 12:32:50 +08:00
parser.add_argument("--my_img_encoder", default="x", type=str)
2023-07-03 17:41:47 +08:00
# parser.add_argument("--my_img_noise_scale", default=0, type=float)
parser.add_argument("--my_sample_len", default=0, type=int)
parser.add_argument("--my_ffn_shift", default=1, type=int)
parser.add_argument("--my_att_shift", default=1, type=int)
parser.add_argument("--my_pos_emb", default=0, type=int)
parser.add_argument("--load_partial", default=0, type=int)
parser.add_argument("--magic_prime", default=0, type=int)
parser.add_argument("--my_qa_mask", default=0, type=int)
2023-07-09 12:32:50 +08:00
parser.add_argument("--my_testing", default="", type=str)
2023-07-03 17:41:47 +08:00
parser.add_argument("--lora", action="store_true")
parser.add_argument("--lora_load", default="", type=str)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=32, type=float)
parser.add_argument("--lora_dropout", default=0.01, type=float)
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
########################################################################################################
import os, warnings, math, datetime, sys, time, importlib
import numpy as np
import torch
from torch.utils.data import DataLoader
2023-07-09 12:32:50 +08:00
2023-07-03 17:41:47 +08:00
if "deepspeed" in args.strategy:
import deepspeed
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
if args.random_seed >= 0:
2023-07-09 12:32:50 +08:00
print(
f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n"
* 3
)
2023-07-03 17:41:47 +08:00
seed_everything(args.random_seed)
np.set_printoptions(precision=4, suppress=True, linewidth=200)
2023-07-09 12:32:50 +08:00
warnings.filterwarnings(
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
)
warnings.filterwarnings(
"ignore", ".*The progress bar already tracks a metric with the*"
)
2023-07-03 17:41:47 +08:00
# os.environ["WDS_SHOW_SEED"] = "1"
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
args.enable_checkpointing = False
args.replace_sampler_ddp = False
args.logger = False
args.gradient_clip_val = 1.0
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
2023-08-24 22:49:57 +08:00
args.max_epochs = args.epoch_count # continue forever
2023-07-03 17:41:47 +08:00
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
os.environ["RWKV_MY_TESTING"] = args.my_testing
if args.dim_att <= 0:
args.dim_att = args.n_embd
if args.dim_ffn <= 0:
args.dim_ffn = args.n_embd * 4
if args.data_type == "wds_img":
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
else:
2023-07-09 12:32:50 +08:00
args.run_name = (
f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
)
2023-07-03 17:41:47 +08:00
if not os.path.exists(args.proj_dir):
os.makedirs(args.proj_dir)
if args.my_pile_stage > 0:
magic_prime_bak = args.magic_prime
if args.ctx_len == 1024:
args.magic_prime = 324331313
args.epoch_count = 8043
elif args.ctx_len == 2048:
args.magic_prime = 162165671
args.epoch_count = 4021
elif args.ctx_len == 4096:
args.magic_prime = 81082817
args.epoch_count = 2010
if args.my_pile_shift < 0:
if args.ctx_len == 1024:
args.my_pile_shift = 0
elif args.ctx_len == 2048:
args.my_pile_shift = 512
elif args.ctx_len == 4096:
args.my_pile_shift = 768
if magic_prime_bak > 0:
args.magic_prime = magic_prime_bak
args.epoch_steps = 40320 // args.real_bsz
assert args.epoch_steps * args.real_bsz == 40320
if args.my_pile_stage == 2:
assert args.lr_final == args.lr_init
if args.my_pile_stage >= 2: # find latest saved model
list_p = []
for p in os.listdir(args.proj_dir):
if p.startswith("rwkv") and p.endswith(".pth"):
p = ((p.split("-"))[1].split("."))[0]
if p == "init":
p = -1
else:
p = int(p)
list_p += [p]
list_p.sort()
max_p = list_p[-1]
if len(list_p) > 1:
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
if args.my_pile_stage == 2:
args.warmup_steps = 10
else:
args.warmup_steps = 30
args.epoch_begin = max_p + 1
samples_per_epoch = args.epoch_steps * args.real_bsz
tokens_per_epoch = samples_per_epoch * args.ctx_len
rank_zero_info(
f"""
############################################################################
#
# RWKV-4 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
2023-11-08 22:18:49 +08:00
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1}, save every {args.epoch_save} epoch
2023-07-03 17:41:47 +08:00
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
# LoRA = {f'enabled, {args.lora_r} r, {args.lora_alpha} alpha, {args.lora_dropout} dropout, on {args.lora_parts}' if args.lora else 'disabled'}
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
# Found deepspeed {deepspeed.__version__ if importlib.util.find_spec('deepspeed') else 'None'}, recommend 0.7.0 (faster than newer versions)
# Found pytorch_lightning {pl.__version__}, recommend 1.9.1 or newer
#
############################################################################
"""
)
rank_zero_info(str(vars(args)) + "\n")
2023-07-09 12:32:50 +08:00
assert args.data_type in [
"utf-8",
"utf-16le",
"numpy",
"binidx",
"dummy",
"wds_img",
"uint16",
]
2023-07-03 17:41:47 +08:00
if args.lr_final == 0 or args.lr_init == 0:
2023-07-09 12:32:50 +08:00
rank_zero_info(
"\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n"
)
2023-07-03 17:41:47 +08:00
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
os.environ["RWKV_FLOAT_MODE"] = args.precision
if args.precision == "fp32":
for i in range(10):
2023-07-09 12:32:50 +08:00
rank_zero_info(
"\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n"
)
2023-07-03 17:41:47 +08:00
if args.precision == "fp16":
2023-07-09 12:32:50 +08:00
rank_zero_info(
"\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n"
)
2023-07-03 17:41:47 +08:00
os.environ["RWKV_JIT_ON"] = "1"
if "deepspeed_stage_3" in args.strategy:
os.environ["RWKV_JIT_ON"] = "0"
if args.lora and args.grad_cp == 1:
2023-07-09 12:32:50 +08:00
print(
"!!!!! LoRA Warning: Gradient Checkpointing requires JIT off, disabling it"
)
2023-07-03 17:41:47 +08:00
os.environ["RWKV_JIT_ON"] = "0"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
if args.precision == "fp32":
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
else:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if "32" in args.precision:
args.precision = 32
elif args.precision == "fp16":
args.precision = 16
else:
args.precision = "bf16"
########################################################################################################
from src.trainer import train_callback, generate_init_weight
from src.dataset import MyDataset
train_data = MyDataset(args)
args.vocab_size = train_data.vocab_size
2023-07-09 12:32:50 +08:00
if args.data_type == "wds_img":
2023-07-03 17:41:47 +08:00
from src.model_img import RWKV_IMG
2023-07-09 12:32:50 +08:00
2023-07-03 17:41:47 +08:00
assert args.lora, "LoRA not yet supported for RWKV_IMG"
model = RWKV_IMG(args)
else:
from src.model import RWKV, LORA_CONFIG, LoraLinear
2023-07-09 12:32:50 +08:00
2023-07-03 17:41:47 +08:00
if args.lora:
assert args.lora_r > 0, "LoRA should have its `r` > 0"
LORA_CONFIG["r"] = args.lora_r
LORA_CONFIG["alpha"] = args.lora_alpha
LORA_CONFIG["dropout"] = args.lora_dropout
2023-07-09 12:32:50 +08:00
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(","))
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
2023-07-03 17:41:47 +08:00
model = RWKV(args)
# only train lora parameters
if args.lora:
model.requires_grad_(False)
for name, module in model.named_modules():
# have to check param name since it may have been wrapped by torchscript
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
2023-07-09 12:32:50 +08:00
print(f" LoRA training module {name}")
2023-07-03 17:41:47 +08:00
for pname, param in module.named_parameters():
2023-07-09 12:32:50 +08:00
param.requires_grad = "lora_" in pname
elif enable_ln_finetune and ".ln" in name:
print(f" LoRA additionally training module {name}")
2023-07-03 17:41:47 +08:00
for param in module.parameters():
param.requires_grad = True
2023-07-09 12:32:50 +08:00
elif enable_time_finetune and any(
2023-08-24 22:49:57 +08:00
n.startswith("time") for n, _ in module.named_parameters()
2023-07-09 12:32:50 +08:00
):
2023-07-03 17:41:47 +08:00
for pname, param in module.named_parameters():
if pname.startswith("time"):
2023-07-09 12:32:50 +08:00
print(f" LoRA additionally training parameter {pname}")
2023-07-03 17:41:47 +08:00
param.requires_grad = True
2023-07-09 12:32:50 +08:00
if (
2023-08-24 22:49:57 +08:00
len(args.load_model) == 0 or args.my_pile_stage == 1
2023-07-09 12:32:50 +08:00
): # shall we build the initial weights?
2023-07-03 17:41:47 +08:00
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
args.load_model = init_weight_name
rank_zero_info(f"########## Loading {args.load_model}... ##########")
try:
load_dict = torch.load(args.load_model, map_location="cpu")
2023-07-09 12:33:29 +08:00
model.load_state_dict(load_dict, strict=(not args.lora))
2023-07-03 17:41:47 +08:00
except:
rank_zero_info(f"Bad checkpoint {args.load_model}")
if args.my_pile_stage >= 2: # try again using another checkpoint
max_p = args.my_pile_prev_p
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
args.epoch_begin = max_p + 1
rank_zero_info(f"Trying {args.load_model}")
load_dict = torch.load(args.load_model, map_location="cpu")
2023-07-09 12:33:29 +08:00
model.load_state_dict(load_dict, strict=(not args.lora))
2023-07-03 17:41:47 +08:00
if args.load_partial == 1:
load_keys = load_dict.keys()
for k in model.state_dict():
if k not in load_keys:
load_dict[k] = model.state_dict()[k]
2023-07-09 12:33:29 +08:00
model.load_state_dict(load_dict, strict=(not args.lora))
2023-07-03 17:41:47 +08:00
# If using LoRA, the LoRA keys might be missing in the original model
2023-07-09 12:33:29 +08:00
# model.load_state_dict(load_dict, strict=(not args.lora))
2023-07-03 17:41:47 +08:00
if os.path.isfile(args.lora_load):
2023-07-09 12:32:50 +08:00
model.load_state_dict(
torch.load(args.lora_load, map_location="cpu"), strict=False
)
2023-07-03 17:41:47 +08:00
trainer: Trainer = Trainer.from_argparse_args(
args,
callbacks=[train_callback(args)],
)
2023-07-09 12:32:50 +08:00
if (
2023-08-24 22:49:57 +08:00
args.lr_init > 1e-4
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
2023-07-09 12:32:50 +08:00
):
if "I_KNOW_WHAT_IM_DOING" in os.environ:
2023-07-03 17:41:47 +08:00
if trainer.global_rank == 0:
2023-07-09 12:32:50 +08:00
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
f" WARNING: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
)
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
2023-07-03 17:41:47 +08:00
else:
if trainer.global_rank == 0:
2023-07-09 12:32:50 +08:00
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
f" ERROR: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
)
print(
f" Unless you are sure this is what you want, adjust them accordingly"
)
print(
f' (to suppress this, set environment variable "I_KNOW_WHAT_IM_DOING")'
)
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
2023-07-03 17:41:47 +08:00
exit(0)
if trainer.global_rank == 0:
for n in model.state_dict():
shape = model.state_dict()[n].shape
shape = [i for i in shape if i != 1]
if len(shape) > 1:
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
else:
print(f"{str(shape[0]).ljust(5)} {n}")
if "deepspeed" in args.strategy:
2023-07-09 12:32:50 +08:00
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
2023-08-24 22:49:57 +08:00
args.ds_bucket_mb * 1000 * 1000
2023-07-09 12:32:50 +08:00
)
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
2023-08-24 22:49:57 +08:00
args.ds_bucket_mb * 1000 * 1000
2023-07-09 12:32:50 +08:00
)
2023-07-03 17:41:47 +08:00
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
2023-07-09 12:32:50 +08:00
data_loader = DataLoader(
train_data,
shuffle=False,
pin_memory=True,
batch_size=args.micro_bsz,
num_workers=1,
persistent_workers=False,
drop_last=True,
)
2023-07-03 17:41:47 +08:00
trainer.fit(model, data_loader)