53 lines
1.9 KiB
Python
53 lines
1.9 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
import torch
|
||
|
from einops import rearrange
|
||
|
|
||
|
|
||
|
def torch_simple_gla(q, k, v, g, chunk_size=64):
|
||
|
q = rearrange(q, 'b h (n c) d -> b h n c d', c = chunk_size) * (q.shape[-1] ** -0.5)
|
||
|
k = rearrange(k, 'b h (n c) d -> b h n c d', c = chunk_size)
|
||
|
v = rearrange(v, 'b h (n c) d -> b h n c d', c = chunk_size)
|
||
|
g = rearrange(g, 'b h (n c) -> b h n c', c = chunk_size)
|
||
|
g = g.cumsum(-1)
|
||
|
kv = k.transpose(-1, -2) @ (v * (-g + g[:, :, :, -1, None]).exp()[..., None])
|
||
|
S = torch.zeros_like(kv)
|
||
|
|
||
|
for i in range(1, g.shape[-2]):
|
||
|
S[:, :, i] = S[:, :, i-1].clone() * g[:, :, i-1, -1, None, None].exp() + kv[:, :, i-1]
|
||
|
|
||
|
inter = (q * g[..., None].exp()) @ S
|
||
|
attn = q @ k.transpose(-1, -2)
|
||
|
attn = attn * (g[..., None] - g[..., None, :]).exp()
|
||
|
attn = attn.masked_fill(torch.triu(torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device), diagonal=1), 0)
|
||
|
intra = attn @ v
|
||
|
o = inter + intra
|
||
|
return rearrange(o, 'b h n c d -> b h (n c) d')
|
||
|
|
||
|
|
||
|
def torch_simple_gla_recurrent(q, k, v, g, chunk_size=64):
|
||
|
# q = rearrange(q, 'b h (n c) d -> b h n c d', c = chunk_size) * (q.shape[-1] ** -0.5)
|
||
|
# k = rearrange(k, 'b h (n c) d -> b h n c d', c = chunk_size)
|
||
|
# v = rearrange(v, 'b h (n c) d -> b h n c d', c = chunk_size)
|
||
|
# g = rearrange(g, 'b h (n c) -> b h n c', c = chunk_size)
|
||
|
# g = g.cumsum(-1)
|
||
|
# kv = k.transpose(-1, -2) @ v
|
||
|
|
||
|
B, H, T, DK = q.shape
|
||
|
q = q * (DK ** -0.5)
|
||
|
_, _, _, DV = v.shape
|
||
|
S = torch.zeros(B, H, DK, DV).to(q)
|
||
|
o = torch.zeros(B, H, T, DV).to(q)
|
||
|
for i in range(T):
|
||
|
gate = g[:, :, i].exp()
|
||
|
key = k[:, :, i]
|
||
|
value = v[:, :, i]
|
||
|
kv = key.unsqueeze(-1) * value.unsqueeze(-2)
|
||
|
S = S.clone() * gate.unsqueeze(-1).unsqueeze(-1) + kv
|
||
|
q_i = q[:, :, i, :]
|
||
|
o_i = (q_i.unsqueeze(-1) * S).sum(-2)
|
||
|
o[:, :, i] = o_i
|
||
|
|
||
|
return o
|
||
|
|