RWKV-Runner/finetune/lora/v6/fla/ops/utils.py

580 lines
16 KiB
Python
Raw Permalink Normal View History

# -*- coding: utf-8 -*-
# Copyright (c) 2023-2024, Yu Zhang, Songlin Yang
from typing import Optional
import torch
import triton
import triton.language as tl
from fla.utils import contiguous
@triton.autotune(
configs=[
triton.Config({'BT': 16}, num_warps=2),
triton.Config({'BT': 16}, num_warps=4),
triton.Config({'BT': 16}, num_warps=8),
triton.Config({'BT': 32}, num_warps=2),
triton.Config({'BT': 32}, num_warps=4),
triton.Config({'BT': 32}, num_warps=8),
triton.Config({'BT': 64}, num_warps=2),
triton.Config({'BT': 64}, num_warps=4),
triton.Config({'BT': 64}, num_warps=8),
],
key=['S']
)
@triton.jit
def logcumsumexp_fwd_kernel(
s,
z,
s_s_h,
s_s_t,
s_s_d,
T: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr
):
i_bh = tl.program_id(0)
o_i = tl.arange(0, BT)
m_s = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.)
b_mp = tl.full([S,], float('-inf'), dtype=tl.float32)
b_zp = tl.zeros([S,], dtype=tl.float32)
for i_t in range(tl.cdiv(T, BT)):
p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, 0), (BT, S), (1, 0))
p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, 0), (BT, S), (1, 0))
# [BT, S]
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
# [S,]
b_mc = tl.max(b_s, 0)
# workaround for compiler bugs
if i_t > 0:
b_mc = tl.maximum(b_mp, b_mc)
b_zp = b_zp * tl.exp(b_mp - b_mc)
# [BT, S]
b_s = tl.exp(b_s - b_mc)
b_z = tl.dot(m_s, b_s, allow_tf32=False) + b_zp
# [S,]
b_zc = tl.max(b_z, 0)
b_mp = b_mc
b_zp = b_zc
# [BT, BS]
# small eps to prevent underflows
b_z = tl.log(tl.where(b_z != 0, b_z, 1e-20)) + b_mc
tl.store(p_z, b_z.to(p_z.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
],
key=['S']
)
@triton.jit
def softmax_fwd_kernel(
s,
p,
s_s_h,
s_s_t,
s_s_d,
T: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr
):
i_t, i_bh = tl.program_id(0), tl.program_id(1)
p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, 0), (BT, S), (1, 0))
p_p = tl.make_block_ptr(p + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, 0), (BT, S), (1, 0))
# [BT, S]
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
# [BT]
b_m = tl.max(b_s, 1)
# [BT, BS]
b_s = tl.exp(b_s - b_m[:, None])
b_z = tl.sum(b_s, 1)
b_p = tl.where(b_s != 0, b_s / b_z[:, None], 0.)
tl.store(p_p, b_p.to(p_p.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
],
key=['S']
)
@triton.jit
def softmax_bwd_kernel(
p,
dp,
ds,
s_s_h,
s_s_t,
s_s_d,
T: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr
):
i_t, i_bh = tl.program_id(0), tl.program_id(1)
p_p = tl.make_block_ptr(p + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, 0), (BT, S), (1, 0))
p_dp = tl.make_block_ptr(dp + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, 0), (BT, S), (1, 0))
p_ds = tl.make_block_ptr(ds + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, 0), (BT, S), (1, 0))
# [BT, BS]
b_p = tl.load(p_p, boundary_check=(0, 1)).to(tl.float32)
b_dp = tl.load(p_dp, boundary_check=(0, 1)).to(tl.float32)
# [BT,]
b_pp = tl.sum(b_p * b_dp, 1)
# [BT, BS]
b_ds = b_p * b_dp - b_p * b_pp[:, None]
tl.store(p_ds, b_ds.to(p_ds.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({'BS': 32}, num_warps=2),
triton.Config({'BS': 32}, num_warps=4),
triton.Config({'BS': 32}, num_warps=8),
triton.Config({'BS': 64}, num_warps=2),
triton.Config({'BS': 64}, num_warps=4),
triton.Config({'BS': 64}, num_warps=8),
triton.Config({'BS': 128}, num_warps=2),
triton.Config({'BS': 128}, num_warps=4),
triton.Config({'BS': 128}, num_warps=8),
],
key=['S']
)
@triton.jit
def recurrent_cumsum_fwd_kernel(
s,
z,
s_s_h,
s_s_t,
T: tl.constexpr,
S: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_s = i_s * BS + tl.arange(0, BS)
mask = o_s < S
b_z = tl.zeros([BS], dtype=tl.float32)
for i_t in range(0, T):
# [BS]
b_s = tl.load(s + i_bh * s_s_h + i_t * s_s_t + o_s, mask=mask, other=0).to(tl.float32)
b_z = b_z + b_s
tl.store(z + i_bh * s_s_h + i_t * s_s_t + o_s, b_z.to(s.dtype.element_ty), mask=mask)
@triton.autotune(
configs=[
triton.Config({'BS': 32}, num_warps=2),
triton.Config({'BS': 32}, num_warps=4),
triton.Config({'BS': 32}, num_warps=8),
triton.Config({'BS': 64}, num_warps=2),
triton.Config({'BS': 64}, num_warps=4),
triton.Config({'BS': 64}, num_warps=8),
triton.Config({'BS': 128}, num_warps=2),
triton.Config({'BS': 128}, num_warps=4),
triton.Config({'BS': 128}, num_warps=8),
],
key=['S']
)
@triton.jit
def recurrent_cumsum_bwd_kernel(
ds,
dz,
s_s_h,
s_s_t,
T: tl.constexpr,
S: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_s = i_s * BS + tl.arange(0, BS)
mask = o_s < S
b_ds = tl.zeros([BS], dtype=tl.float32)
for i_t in range(T - 1, -1, -1):
# [BS]
b_dz = tl.load(dz + i_bh * s_s_h + i_t * s_s_t + o_s, mask=mask, other=0).to(tl.float32)
b_ds = b_ds + b_dz
tl.store(ds + i_bh * s_s_h + i_t * s_s_t + o_s, b_ds.to(ds.dtype.element_ty), mask=mask)
@triton.autotune(
configs=[
triton.Config({'BT': 16}, num_warps=2),
triton.Config({'BT': 16}, num_warps=4),
triton.Config({'BT': 16}, num_warps=8),
triton.Config({'BT': 32}, num_warps=2),
triton.Config({'BT': 32}, num_warps=4),
triton.Config({'BT': 32}, num_warps=8),
triton.Config({'BT': 64}, num_warps=2),
triton.Config({'BT': 64}, num_warps=4),
triton.Config({'BT': 64}, num_warps=8),
],
key=['S']
)
@triton.jit
def chunk_cumsum_fwd_kernel(
s,
z,
s_s_h,
s_s_t,
s_s_d,
T: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_i = tl.arange(0, BT)
m_s = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.)
b_z = tl.zeros([BS], dtype=tl.float32)
for i_t in range(tl.cdiv(T, BT)):
p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
# [BT, BS]
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
b_c = b_z[None, :] + tl.dot(m_s, b_s, allow_tf32=False)
tl.store(p_z, b_c.to(p_z.dtype.element_ty), boundary_check=(0, 1))
if i_t >= 0:
b_z += tl.sum(b_s, 0)
@triton.autotune(
configs=[
triton.Config({'BT': 16}, num_warps=2),
triton.Config({'BT': 16}, num_warps=4),
triton.Config({'BT': 16}, num_warps=8),
triton.Config({'BT': 32}, num_warps=2),
triton.Config({'BT': 32}, num_warps=4),
triton.Config({'BT': 32}, num_warps=8),
triton.Config({'BT': 64}, num_warps=2),
triton.Config({'BT': 64}, num_warps=4),
triton.Config({'BT': 64}, num_warps=8),
],
key=['S']
)
@triton.jit
def chunk_cumsum_bwd_kernel(
ds,
dz,
s_s_h,
s_s_t,
s_s_d,
T: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_i = tl.arange(0, BT)
m_s = tl.where(o_i[:, None] <= o_i[None, :], 1., 0.)
b_ds = tl.zeros([BS], dtype=tl.float32)
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_ds = tl.make_block_ptr(ds + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_dz = tl.make_block_ptr(dz + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
# [BT, BS]
b_dz = tl.load(p_dz, boundary_check=(0, 1)).to(tl.float32)
b_c = b_ds[None, :] + tl.dot(m_s, b_dz, allow_tf32=False)
tl.store(p_ds, b_c.to(p_ds.dtype.element_ty), boundary_check=(0, 1))
if i_t >= 0:
b_ds += tl.sum(b_dz, 0)
@contiguous
def chunk_cumsum_fwd(
s: torch.Tensor,
dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
B, H, T, S = s.shape
BS = 32
dtype = dtype or s.dtype
grid = (triton.cdiv(S, BS), B * H)
z = torch.empty_like(s, dtype=dtype)
chunk_cumsum_fwd_kernel[grid](
s, z,
s.stride(1), s.stride(2), s.stride(3),
T=T, S=S, BS=BS
)
return z
@contiguous
def chunk_cumsum_bwd(
dz: torch.Tensor,
dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
B, H, T, S = dz.shape
BS = 32
dtype = dtype or dz.dtype
grid = (triton.cdiv(S, BS), B * H)
ds = torch.empty_like(dz, dtype=dtype)
chunk_cumsum_bwd_kernel[grid](
ds, dz,
ds.stride(1), ds.stride(2), ds.stride(3),
T=T, S=S, BS=BS
)
return ds
class CumsumFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, s, dtype):
z = chunk_cumsum_fwd(s, dtype)
ctx.dtype = dtype
return z
@staticmethod
def backward(ctx, dz):
ds = chunk_cumsum_bwd(dz, ctx.dtype)
return ds, None
def cumsum(
s: torch.Tensor,
dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
return CumsumFunction.apply(s, dtype)
@triton.autotune(
configs=[
triton.Config({'BS': 32}, num_warps=2),
triton.Config({'BS': 32}, num_warps=4),
triton.Config({'BS': 32}, num_warps=8),
triton.Config({'BS': 64}, num_warps=2),
triton.Config({'BS': 64}, num_warps=4),
triton.Config({'BS': 64}, num_warps=8),
triton.Config({'BS': 128}, num_warps=2),
triton.Config({'BS': 128}, num_warps=4),
triton.Config({'BS': 128}, num_warps=8),
],
key=['S']
)
@triton.jit
def recurrent_reversed_cumsum_fwd_kernel(
s,
z,
s_s_h,
s_s_t,
T: tl.constexpr,
S: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_s = i_s * BS + tl.arange(0, BS)
mask = o_s < S
b_z = tl.zeros([BS], dtype=tl.float32)
for i_t in range(T - 1, -1, -1):
# [BS]
b_s = tl.load(s + i_bh * s_s_h + i_t * s_s_t + o_s, mask=mask, other=0).to(tl.float32)
b_z = b_z + b_s
tl.store(z + i_bh * s_s_h + i_t * s_s_t + o_s, b_z.to(s.dtype.element_ty), mask=mask)
@triton.autotune(
configs=[
triton.Config({'BS': 32}, num_warps=2),
triton.Config({'BS': 32}, num_warps=4),
triton.Config({'BS': 32}, num_warps=8),
triton.Config({'BS': 64}, num_warps=2),
triton.Config({'BS': 64}, num_warps=4),
triton.Config({'BS': 64}, num_warps=8),
triton.Config({'BS': 128}, num_warps=2),
triton.Config({'BS': 128}, num_warps=4),
triton.Config({'BS': 128}, num_warps=8),
],
key=['S']
)
@triton.jit
def recurrent_reversed_cumsum_bwd_kernel(
ds,
dz,
s_s_h,
s_s_t,
T: tl.constexpr,
S: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_s = i_s * BS + tl.arange(0, BS)
mask = o_s < S
b_ds = tl.zeros([BS], dtype=tl.float32)
for i_t in range(0, T):
# [BS]
b_dz = tl.load(dz + i_bh * s_s_h + i_t * s_s_t + o_s, mask=mask, other=0).to(tl.float32)
b_ds = b_ds + b_dz
tl.store(ds + i_bh * s_s_h + i_t * s_s_t + o_s, b_ds.to(ds.dtype.element_ty), mask=mask)
@triton.autotune(
configs=[
triton.Config({'BT': 16}, num_warps=2),
triton.Config({'BT': 16}, num_warps=4),
triton.Config({'BT': 16}, num_warps=8),
triton.Config({'BT': 32}, num_warps=2),
triton.Config({'BT': 32}, num_warps=4),
triton.Config({'BT': 32}, num_warps=8),
triton.Config({'BT': 64}, num_warps=2),
triton.Config({'BT': 64}, num_warps=4),
triton.Config({'BT': 64}, num_warps=8),
],
key=['S']
)
@triton.jit
def chunk_reversed_cumsum_fwd_kernel(
s,
z,
s_s_h,
s_s_t,
s_s_d,
T: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_i = tl.arange(0, BT)
m_s = tl.where(o_i[:, None] <= o_i[None, :], 1., 0.)
b_z = tl.zeros([BS], dtype=tl.float32)
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
# [BT, BS]
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
b_c = b_z[None, :] + tl.dot(m_s, b_s, allow_tf32=False)
tl.store(p_z, b_c.to(p_z.dtype.element_ty), boundary_check=(0, 1))
if i_t >= 0:
b_z += tl.sum(b_s, 0)
@triton.autotune(
configs=[
triton.Config({'BT': 16}, num_warps=2),
triton.Config({'BT': 16}, num_warps=4),
triton.Config({'BT': 16}, num_warps=8),
triton.Config({'BT': 32}, num_warps=2),
triton.Config({'BT': 32}, num_warps=4),
triton.Config({'BT': 32}, num_warps=8),
triton.Config({'BT': 64}, num_warps=2),
triton.Config({'BT': 64}, num_warps=4),
triton.Config({'BT': 64}, num_warps=8),
],
key=['S']
)
@triton.jit
def chunk_reversed_cumsum_bwd_kernel(
ds,
dz,
s_s_h,
s_s_t,
s_s_d,
T: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr
):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
o_i = tl.arange(0, BT)
m_s = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.)
b_ds = tl.zeros([BS], dtype=tl.float32)
for i_t in range(tl.cdiv(T, BT)):
p_ds = tl.make_block_ptr(ds + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_dz = tl.make_block_ptr(dz + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
# [BT, BS]
b_dz = tl.load(p_dz, boundary_check=(0, 1)).to(tl.float32)
b_c = b_ds[None, :] + tl.dot(m_s, b_dz, allow_tf32=False)
tl.store(p_ds, b_c.to(p_ds.dtype.element_ty), boundary_check=(0, 1))
if i_t >= 0:
b_ds += tl.sum(b_dz, 0)
@contiguous
def chunk_reversed_cumsum_fwd(
s: torch.Tensor,
dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
B, H, T, S = s.shape
BS = 32
dtype = dtype or s.dtype
grid = (triton.cdiv(S, BS), B * H)
z = torch.empty_like(s, dtype=dtype)
chunk_reversed_cumsum_fwd_kernel[grid](
s, z,
s.stride(1), s.stride(2), s.stride(3),
T=T, S=S, BS=BS
)
return z
@contiguous
def chunk_reversed_cumsum_bwd(
dz: torch.Tensor,
dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
B, H, T, S = dz.shape
BS = 32
dtype = dtype or dz.dtype
grid = (triton.cdiv(S, BS), B * H)
ds = torch.empty_like(dz, dtype=dtype)
chunk_reversed_cumsum_bwd_kernel[grid](
ds, dz,
ds.stride(1), ds.stride(2), ds.stride(3),
T=T, S=S, BS=BS
)
return ds
class ReversedCumsumFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, s, dtype):
z = chunk_reversed_cumsum_fwd(s, dtype)
ctx.dtype = dtype
return z
@staticmethod
def backward(ctx, dz):
ds = chunk_reversed_cumsum_bwd(dz, ctx.dtype)
return ds, None
def reversed_cumsum(
s: torch.Tensor,
dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
return CumsumFunction.apply(s, dtype)