RWKV-Runner/finetune/lora/v6/fla/layers/linear_attn.py

157 lines
6.0 KiB
Python
Raw Permalink Normal View History

# -*- coding: utf-8 -*-
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from fla.modules import RMSNorm
from fla.modules.feature_map import (DPFPFeatureMap, HadamardFeatureMap,
HedgehogFeatureMap, T2RFeatureMap)
from fla.ops.linear_attn import (chunk_linear_attn, fused_chunk_linear_attn,
fused_recurrent_linear_attn)
class LinearAttention(nn.Module):
def __init__(
self,
hidden_size: str = 1024,
expand_k: int = 1.0,
expand_v: int = 1.0,
num_heads: int = 8,
mode: str = 'chunk',
feature_map: str = 'elementwise_product',
tie_feature_map_qk: bool = False,
output_norm: str = 'rmsnorm',
norm_q: bool = False,
norm_k: bool = False,
# standard linear attention normalization
do_feature_map_norm: bool = False,
elementwise_affine: bool = True,
norm_eps: float = 1e-5,
**kwargs,
):
super().__init__()
assert feature_map in ['elu', 'relu', 'hedgehog', 't2r', 'dpfp',
'identity', 'elementwise_product'], f"Not supported feature map `{feature_map}`."
assert output_norm in ['rmsnorm', 'identity'], f"Not supported output norm `{output_norm}`."
self.hidden_size
self.mode = mode
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.num_heads = num_heads
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
if feature_map == 'hedgehog':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 't2r':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = T2RFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'elementwise_product':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = HadamardFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'dpfp':
self.feature_map_q = DPFPFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = DPFPFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'elu':
def elu(x):
return F.elu(x) + 1
self.feature_map_q = elu
self.feature_map_k = elu
elif feature_map == 'relu':
self.feature_map_q = nn.ReLU()
self.feature_map_k = nn.ReLU()
elif feature_map == 'identity':
self.feature_map_q = nn.Identity()
self.feature_map_k = nn.Identity()
else:
raise NotImplementedError
self.do_feature_map_norm = do_feature_map_norm
if output_norm == 'rmsnorm':
self.norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
elif output_norm == 'identity':
self.norm = nn.Identity()
else:
raise NotImplementedError
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.norm_q = norm_q
self.norm_k = norm_k
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, x):
mode = self.mode
q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
q = self.feature_map_q(q)
k = self.feature_map_k(k)
if self.norm_q:
q = q / (q.sum(-1, keepdim=True) + 1e-4)
if self.norm_k:
k = k / (k.sum(-1, keepdim=True) + 1e-4)
if mode == 'chunk':
o = chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
elif mode == 'fused_chunk':
o = fused_chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
elif mode == 'fused_recurrent':
o = fused_recurrent_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
else:
raise NotImplementedError
o = self.norm(o)
o = rearrange(o, 'b h n d -> b n (h d)')
o = self.o_proj(o)
return o
if __name__ == '__main__':
import torch
batch = 4
seq_len = 1024
hidden_size = 1024
x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True)
model = LinearAttention(hidden_size, feature_map='dplp').to(torch.bfloat16).cuda()
y = model(x)
print(y.shape)
y.sum().backward()
print(x.grad.shape)